Numerical Modeling of Gas and Water Flow in Shale Gas Formations with a Focus on the Fate of Hydraulic Fracturing Fluid

Hydraulic fracturing in shale gas formations involves the injection of large volumes of aqueous fluid deep underground. Only a small proportion of the injected water volume is typically recovered, raising concerns that the remaining water may migrate upward and potentially contaminate groundwater aq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2017-12, Vol.51 (23), p.13779-13787
Hauptverfasser: Edwards, Ryan W. J, Doster, Florian, Celia, Michael A, Bandilla, Karl W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13787
container_issue 23
container_start_page 13779
container_title Environmental science & technology
container_volume 51
creator Edwards, Ryan W. J
Doster, Florian
Celia, Michael A
Bandilla, Karl W
description Hydraulic fracturing in shale gas formations involves the injection of large volumes of aqueous fluid deep underground. Only a small proportion of the injected water volume is typically recovered, raising concerns that the remaining water may migrate upward and potentially contaminate groundwater aquifers. We implement a numerical model of two-phase water and gas flow in a shale gas formation to test the hypothesis that the remaining water is imbibed into the shale rock by capillary forces and retained there indefinitely. The model includes the essential physics of the system and uses the simplest justifiable geometrical structure. We apply the model to simulate wells from a specific well pad in the Horn River Basin, British Columbia, where there is sufficient available data to build and test the model. Our simulations match the water and gas production data from the wells remarkably closely and show that all the injected water can be accounted for within the shale system, with most imbibed into the shale rock matrix and retained there for the long term.
doi_str_mv 10.1021/acs.est.7b03270
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1958535864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1958535864</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-2d7744ce80b2141bed76f5381b24690230c3003af7de2631089ea32b343ea1393</originalsourceid><addsrcrecordid>eNp1kc9LHDEYhoO06NZ69lYCvRRk1i_J_Mgci3S0YNtDW_Q2fJPJuJHMxCYTFv97M921gtBTIHneJ8n3EnLKYM2As3NUYa3DvK46ELyCA7JiBYeskAV7Q1YATGS1KG-PyLsQ7gGAC5CH5IjXIMuizFdk-z2O2huFln5zvbZmuqNuoJcYKE49vcFZe9pYt6Vmoj83aPXfs8b5EWfjpkC3Zt5QTDsqBuomOm80bVJs0Vw99h6jNYo2HtUc_aJvbDT9e_J2QBv0yX49Jr-bL78urrLrH5dfLz5fZyhKNme8r6o8V1pCx1nOOt1X5VAIyTqel_XyHSUABA5Vr3kpGMhao-CdyIVGJmpxTD7tvA_e_YlpVO1ogtLW4qRdDC2r06xEIcs8oR9fofcu-im9LlGykLzOZZWo8x2lvAvB66F98GZE_9gyaJdO2tRJu6T3naTEh703dqPu__HPJSTgbAcsyZc7_6N7Ap05lSI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1985829487</pqid></control><display><type>article</type><title>Numerical Modeling of Gas and Water Flow in Shale Gas Formations with a Focus on the Fate of Hydraulic Fracturing Fluid</title><source>ACS Publications</source><creator>Edwards, Ryan W. J ; Doster, Florian ; Celia, Michael A ; Bandilla, Karl W</creator><creatorcontrib>Edwards, Ryan W. J ; Doster, Florian ; Celia, Michael A ; Bandilla, Karl W</creatorcontrib><description>Hydraulic fracturing in shale gas formations involves the injection of large volumes of aqueous fluid deep underground. Only a small proportion of the injected water volume is typically recovered, raising concerns that the remaining water may migrate upward and potentially contaminate groundwater aquifers. We implement a numerical model of two-phase water and gas flow in a shale gas formation to test the hypothesis that the remaining water is imbibed into the shale rock by capillary forces and retained there indefinitely. The model includes the essential physics of the system and uses the simplest justifiable geometrical structure. We apply the model to simulate wells from a specific well pad in the Horn River Basin, British Columbia, where there is sufficient available data to build and test the model. Our simulations match the water and gas production data from the wells remarkably closely and show that all the injected water can be accounted for within the shale system, with most imbibed into the shale rock matrix and retained there for the long term.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.7b03270</identifier><identifier>PMID: 29086564</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aquifers ; Computer simulation ; Fluids ; Gas flow ; Gas production ; Gases ; Groundwater ; Groundwater pollution ; Hydraulic fracturing ; Mathematical models ; Physics ; River basins ; Rivers ; Shale ; Shale gas ; Water ; Water flow ; Water pollution ; Water wells</subject><ispartof>Environmental science &amp; technology, 2017-12, Vol.51 (23), p.13779-13787</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 5, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-2d7744ce80b2141bed76f5381b24690230c3003af7de2631089ea32b343ea1393</citedby><cites>FETCH-LOGICAL-a361t-2d7744ce80b2141bed76f5381b24690230c3003af7de2631089ea32b343ea1393</cites><orcidid>0000-0002-5607-0441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.7b03270$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.7b03270$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29086564$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Edwards, Ryan W. J</creatorcontrib><creatorcontrib>Doster, Florian</creatorcontrib><creatorcontrib>Celia, Michael A</creatorcontrib><creatorcontrib>Bandilla, Karl W</creatorcontrib><title>Numerical Modeling of Gas and Water Flow in Shale Gas Formations with a Focus on the Fate of Hydraulic Fracturing Fluid</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Hydraulic fracturing in shale gas formations involves the injection of large volumes of aqueous fluid deep underground. Only a small proportion of the injected water volume is typically recovered, raising concerns that the remaining water may migrate upward and potentially contaminate groundwater aquifers. We implement a numerical model of two-phase water and gas flow in a shale gas formation to test the hypothesis that the remaining water is imbibed into the shale rock by capillary forces and retained there indefinitely. The model includes the essential physics of the system and uses the simplest justifiable geometrical structure. We apply the model to simulate wells from a specific well pad in the Horn River Basin, British Columbia, where there is sufficient available data to build and test the model. Our simulations match the water and gas production data from the wells remarkably closely and show that all the injected water can be accounted for within the shale system, with most imbibed into the shale rock matrix and retained there for the long term.</description><subject>Aquifers</subject><subject>Computer simulation</subject><subject>Fluids</subject><subject>Gas flow</subject><subject>Gas production</subject><subject>Gases</subject><subject>Groundwater</subject><subject>Groundwater pollution</subject><subject>Hydraulic fracturing</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>River basins</subject><subject>Rivers</subject><subject>Shale</subject><subject>Shale gas</subject><subject>Water</subject><subject>Water flow</subject><subject>Water pollution</subject><subject>Water wells</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kc9LHDEYhoO06NZ69lYCvRRk1i_J_Mgci3S0YNtDW_Q2fJPJuJHMxCYTFv97M921gtBTIHneJ8n3EnLKYM2As3NUYa3DvK46ELyCA7JiBYeskAV7Q1YATGS1KG-PyLsQ7gGAC5CH5IjXIMuizFdk-z2O2huFln5zvbZmuqNuoJcYKE49vcFZe9pYt6Vmoj83aPXfs8b5EWfjpkC3Zt5QTDsqBuomOm80bVJs0Vw99h6jNYo2HtUc_aJvbDT9e_J2QBv0yX49Jr-bL78urrLrH5dfLz5fZyhKNme8r6o8V1pCx1nOOt1X5VAIyTqel_XyHSUABA5Vr3kpGMhao-CdyIVGJmpxTD7tvA_e_YlpVO1ogtLW4qRdDC2r06xEIcs8oR9fofcu-im9LlGykLzOZZWo8x2lvAvB66F98GZE_9gyaJdO2tRJu6T3naTEh703dqPu__HPJSTgbAcsyZc7_6N7Ap05lSI</recordid><startdate>20171205</startdate><enddate>20171205</enddate><creator>Edwards, Ryan W. J</creator><creator>Doster, Florian</creator><creator>Celia, Michael A</creator><creator>Bandilla, Karl W</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5607-0441</orcidid></search><sort><creationdate>20171205</creationdate><title>Numerical Modeling of Gas and Water Flow in Shale Gas Formations with a Focus on the Fate of Hydraulic Fracturing Fluid</title><author>Edwards, Ryan W. J ; Doster, Florian ; Celia, Michael A ; Bandilla, Karl W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-2d7744ce80b2141bed76f5381b24690230c3003af7de2631089ea32b343ea1393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aquifers</topic><topic>Computer simulation</topic><topic>Fluids</topic><topic>Gas flow</topic><topic>Gas production</topic><topic>Gases</topic><topic>Groundwater</topic><topic>Groundwater pollution</topic><topic>Hydraulic fracturing</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>River basins</topic><topic>Rivers</topic><topic>Shale</topic><topic>Shale gas</topic><topic>Water</topic><topic>Water flow</topic><topic>Water pollution</topic><topic>Water wells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Edwards, Ryan W. J</creatorcontrib><creatorcontrib>Doster, Florian</creatorcontrib><creatorcontrib>Celia, Michael A</creatorcontrib><creatorcontrib>Bandilla, Karl W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edwards, Ryan W. J</au><au>Doster, Florian</au><au>Celia, Michael A</au><au>Bandilla, Karl W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Modeling of Gas and Water Flow in Shale Gas Formations with a Focus on the Fate of Hydraulic Fracturing Fluid</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2017-12-05</date><risdate>2017</risdate><volume>51</volume><issue>23</issue><spage>13779</spage><epage>13787</epage><pages>13779-13787</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Hydraulic fracturing in shale gas formations involves the injection of large volumes of aqueous fluid deep underground. Only a small proportion of the injected water volume is typically recovered, raising concerns that the remaining water may migrate upward and potentially contaminate groundwater aquifers. We implement a numerical model of two-phase water and gas flow in a shale gas formation to test the hypothesis that the remaining water is imbibed into the shale rock by capillary forces and retained there indefinitely. The model includes the essential physics of the system and uses the simplest justifiable geometrical structure. We apply the model to simulate wells from a specific well pad in the Horn River Basin, British Columbia, where there is sufficient available data to build and test the model. Our simulations match the water and gas production data from the wells remarkably closely and show that all the injected water can be accounted for within the shale system, with most imbibed into the shale rock matrix and retained there for the long term.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29086564</pmid><doi>10.1021/acs.est.7b03270</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5607-0441</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2017-12, Vol.51 (23), p.13779-13787
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_1958535864
source ACS Publications
subjects Aquifers
Computer simulation
Fluids
Gas flow
Gas production
Gases
Groundwater
Groundwater pollution
Hydraulic fracturing
Mathematical models
Physics
River basins
Rivers
Shale
Shale gas
Water
Water flow
Water pollution
Water wells
title Numerical Modeling of Gas and Water Flow in Shale Gas Formations with a Focus on the Fate of Hydraulic Fracturing Fluid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A57%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Modeling%20of%20Gas%20and%20Water%20Flow%20in%20Shale%20Gas%20Formations%20with%20a%20Focus%20on%20the%20Fate%20of%20Hydraulic%20Fracturing%20Fluid&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Edwards,%20Ryan%20W.%20J&rft.date=2017-12-05&rft.volume=51&rft.issue=23&rft.spage=13779&rft.epage=13787&rft.pages=13779-13787&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.7b03270&rft_dat=%3Cproquest_cross%3E1958535864%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1985829487&rft_id=info:pmid/29086564&rfr_iscdi=true