Numerical Modeling of Gas and Water Flow in Shale Gas Formations with a Focus on the Fate of Hydraulic Fracturing Fluid
Hydraulic fracturing in shale gas formations involves the injection of large volumes of aqueous fluid deep underground. Only a small proportion of the injected water volume is typically recovered, raising concerns that the remaining water may migrate upward and potentially contaminate groundwater aq...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2017-12, Vol.51 (23), p.13779-13787 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13787 |
---|---|
container_issue | 23 |
container_start_page | 13779 |
container_title | Environmental science & technology |
container_volume | 51 |
creator | Edwards, Ryan W. J Doster, Florian Celia, Michael A Bandilla, Karl W |
description | Hydraulic fracturing in shale gas formations involves the injection of large volumes of aqueous fluid deep underground. Only a small proportion of the injected water volume is typically recovered, raising concerns that the remaining water may migrate upward and potentially contaminate groundwater aquifers. We implement a numerical model of two-phase water and gas flow in a shale gas formation to test the hypothesis that the remaining water is imbibed into the shale rock by capillary forces and retained there indefinitely. The model includes the essential physics of the system and uses the simplest justifiable geometrical structure. We apply the model to simulate wells from a specific well pad in the Horn River Basin, British Columbia, where there is sufficient available data to build and test the model. Our simulations match the water and gas production data from the wells remarkably closely and show that all the injected water can be accounted for within the shale system, with most imbibed into the shale rock matrix and retained there for the long term. |
doi_str_mv | 10.1021/acs.est.7b03270 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1958535864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1958535864</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-2d7744ce80b2141bed76f5381b24690230c3003af7de2631089ea32b343ea1393</originalsourceid><addsrcrecordid>eNp1kc9LHDEYhoO06NZ69lYCvRRk1i_J_Mgci3S0YNtDW_Q2fJPJuJHMxCYTFv97M921gtBTIHneJ8n3EnLKYM2As3NUYa3DvK46ELyCA7JiBYeskAV7Q1YATGS1KG-PyLsQ7gGAC5CH5IjXIMuizFdk-z2O2huFln5zvbZmuqNuoJcYKE49vcFZe9pYt6Vmoj83aPXfs8b5EWfjpkC3Zt5QTDsqBuomOm80bVJs0Vw99h6jNYo2HtUc_aJvbDT9e_J2QBv0yX49Jr-bL78urrLrH5dfLz5fZyhKNme8r6o8V1pCx1nOOt1X5VAIyTqel_XyHSUABA5Vr3kpGMhao-CdyIVGJmpxTD7tvA_e_YlpVO1ogtLW4qRdDC2r06xEIcs8oR9fofcu-im9LlGykLzOZZWo8x2lvAvB66F98GZE_9gyaJdO2tRJu6T3naTEh703dqPu__HPJSTgbAcsyZc7_6N7Ap05lSI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1985829487</pqid></control><display><type>article</type><title>Numerical Modeling of Gas and Water Flow in Shale Gas Formations with a Focus on the Fate of Hydraulic Fracturing Fluid</title><source>ACS Publications</source><creator>Edwards, Ryan W. J ; Doster, Florian ; Celia, Michael A ; Bandilla, Karl W</creator><creatorcontrib>Edwards, Ryan W. J ; Doster, Florian ; Celia, Michael A ; Bandilla, Karl W</creatorcontrib><description>Hydraulic fracturing in shale gas formations involves the injection of large volumes of aqueous fluid deep underground. Only a small proportion of the injected water volume is typically recovered, raising concerns that the remaining water may migrate upward and potentially contaminate groundwater aquifers. We implement a numerical model of two-phase water and gas flow in a shale gas formation to test the hypothesis that the remaining water is imbibed into the shale rock by capillary forces and retained there indefinitely. The model includes the essential physics of the system and uses the simplest justifiable geometrical structure. We apply the model to simulate wells from a specific well pad in the Horn River Basin, British Columbia, where there is sufficient available data to build and test the model. Our simulations match the water and gas production data from the wells remarkably closely and show that all the injected water can be accounted for within the shale system, with most imbibed into the shale rock matrix and retained there for the long term.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.7b03270</identifier><identifier>PMID: 29086564</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aquifers ; Computer simulation ; Fluids ; Gas flow ; Gas production ; Gases ; Groundwater ; Groundwater pollution ; Hydraulic fracturing ; Mathematical models ; Physics ; River basins ; Rivers ; Shale ; Shale gas ; Water ; Water flow ; Water pollution ; Water wells</subject><ispartof>Environmental science & technology, 2017-12, Vol.51 (23), p.13779-13787</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 5, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-2d7744ce80b2141bed76f5381b24690230c3003af7de2631089ea32b343ea1393</citedby><cites>FETCH-LOGICAL-a361t-2d7744ce80b2141bed76f5381b24690230c3003af7de2631089ea32b343ea1393</cites><orcidid>0000-0002-5607-0441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.7b03270$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.7b03270$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29086564$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Edwards, Ryan W. J</creatorcontrib><creatorcontrib>Doster, Florian</creatorcontrib><creatorcontrib>Celia, Michael A</creatorcontrib><creatorcontrib>Bandilla, Karl W</creatorcontrib><title>Numerical Modeling of Gas and Water Flow in Shale Gas Formations with a Focus on the Fate of Hydraulic Fracturing Fluid</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Hydraulic fracturing in shale gas formations involves the injection of large volumes of aqueous fluid deep underground. Only a small proportion of the injected water volume is typically recovered, raising concerns that the remaining water may migrate upward and potentially contaminate groundwater aquifers. We implement a numerical model of two-phase water and gas flow in a shale gas formation to test the hypothesis that the remaining water is imbibed into the shale rock by capillary forces and retained there indefinitely. The model includes the essential physics of the system and uses the simplest justifiable geometrical structure. We apply the model to simulate wells from a specific well pad in the Horn River Basin, British Columbia, where there is sufficient available data to build and test the model. Our simulations match the water and gas production data from the wells remarkably closely and show that all the injected water can be accounted for within the shale system, with most imbibed into the shale rock matrix and retained there for the long term.</description><subject>Aquifers</subject><subject>Computer simulation</subject><subject>Fluids</subject><subject>Gas flow</subject><subject>Gas production</subject><subject>Gases</subject><subject>Groundwater</subject><subject>Groundwater pollution</subject><subject>Hydraulic fracturing</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>River basins</subject><subject>Rivers</subject><subject>Shale</subject><subject>Shale gas</subject><subject>Water</subject><subject>Water flow</subject><subject>Water pollution</subject><subject>Water wells</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kc9LHDEYhoO06NZ69lYCvRRk1i_J_Mgci3S0YNtDW_Q2fJPJuJHMxCYTFv97M921gtBTIHneJ8n3EnLKYM2As3NUYa3DvK46ELyCA7JiBYeskAV7Q1YATGS1KG-PyLsQ7gGAC5CH5IjXIMuizFdk-z2O2huFln5zvbZmuqNuoJcYKE49vcFZe9pYt6Vmoj83aPXfs8b5EWfjpkC3Zt5QTDsqBuomOm80bVJs0Vw99h6jNYo2HtUc_aJvbDT9e_J2QBv0yX49Jr-bL78urrLrH5dfLz5fZyhKNme8r6o8V1pCx1nOOt1X5VAIyTqel_XyHSUABA5Vr3kpGMhao-CdyIVGJmpxTD7tvA_e_YlpVO1ogtLW4qRdDC2r06xEIcs8oR9fofcu-im9LlGykLzOZZWo8x2lvAvB66F98GZE_9gyaJdO2tRJu6T3naTEh703dqPu__HPJSTgbAcsyZc7_6N7Ap05lSI</recordid><startdate>20171205</startdate><enddate>20171205</enddate><creator>Edwards, Ryan W. J</creator><creator>Doster, Florian</creator><creator>Celia, Michael A</creator><creator>Bandilla, Karl W</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5607-0441</orcidid></search><sort><creationdate>20171205</creationdate><title>Numerical Modeling of Gas and Water Flow in Shale Gas Formations with a Focus on the Fate of Hydraulic Fracturing Fluid</title><author>Edwards, Ryan W. J ; Doster, Florian ; Celia, Michael A ; Bandilla, Karl W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-2d7744ce80b2141bed76f5381b24690230c3003af7de2631089ea32b343ea1393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aquifers</topic><topic>Computer simulation</topic><topic>Fluids</topic><topic>Gas flow</topic><topic>Gas production</topic><topic>Gases</topic><topic>Groundwater</topic><topic>Groundwater pollution</topic><topic>Hydraulic fracturing</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>River basins</topic><topic>Rivers</topic><topic>Shale</topic><topic>Shale gas</topic><topic>Water</topic><topic>Water flow</topic><topic>Water pollution</topic><topic>Water wells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Edwards, Ryan W. J</creatorcontrib><creatorcontrib>Doster, Florian</creatorcontrib><creatorcontrib>Celia, Michael A</creatorcontrib><creatorcontrib>Bandilla, Karl W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edwards, Ryan W. J</au><au>Doster, Florian</au><au>Celia, Michael A</au><au>Bandilla, Karl W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Modeling of Gas and Water Flow in Shale Gas Formations with a Focus on the Fate of Hydraulic Fracturing Fluid</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2017-12-05</date><risdate>2017</risdate><volume>51</volume><issue>23</issue><spage>13779</spage><epage>13787</epage><pages>13779-13787</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Hydraulic fracturing in shale gas formations involves the injection of large volumes of aqueous fluid deep underground. Only a small proportion of the injected water volume is typically recovered, raising concerns that the remaining water may migrate upward and potentially contaminate groundwater aquifers. We implement a numerical model of two-phase water and gas flow in a shale gas formation to test the hypothesis that the remaining water is imbibed into the shale rock by capillary forces and retained there indefinitely. The model includes the essential physics of the system and uses the simplest justifiable geometrical structure. We apply the model to simulate wells from a specific well pad in the Horn River Basin, British Columbia, where there is sufficient available data to build and test the model. Our simulations match the water and gas production data from the wells remarkably closely and show that all the injected water can be accounted for within the shale system, with most imbibed into the shale rock matrix and retained there for the long term.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29086564</pmid><doi>10.1021/acs.est.7b03270</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5607-0441</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2017-12, Vol.51 (23), p.13779-13787 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_1958535864 |
source | ACS Publications |
subjects | Aquifers Computer simulation Fluids Gas flow Gas production Gases Groundwater Groundwater pollution Hydraulic fracturing Mathematical models Physics River basins Rivers Shale Shale gas Water Water flow Water pollution Water wells |
title | Numerical Modeling of Gas and Water Flow in Shale Gas Formations with a Focus on the Fate of Hydraulic Fracturing Fluid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A57%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Modeling%20of%20Gas%20and%20Water%20Flow%20in%20Shale%20Gas%20Formations%20with%20a%20Focus%20on%20the%20Fate%20of%20Hydraulic%20Fracturing%20Fluid&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Edwards,%20Ryan%20W.%20J&rft.date=2017-12-05&rft.volume=51&rft.issue=23&rft.spage=13779&rft.epage=13787&rft.pages=13779-13787&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.7b03270&rft_dat=%3Cproquest_cross%3E1958535864%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1985829487&rft_id=info:pmid/29086564&rfr_iscdi=true |