Mechanisms and improvement of acid resistance in lactic acid bacteria

Lactic acid bacteria (LAB) can take advantage of fermentable carbohydrates to produce lactic acid. They are proverbially applied in industry, agricultural production, animal husbandry, food enterprise, pharmaceutical engineering and some other important fields, which are closely related to human lif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of microbiology 2018-03, Vol.200 (2), p.195-201
Hauptverfasser: Wang, Chao, Cui, Yanhua, Qu, Xiaojun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 201
container_issue 2
container_start_page 195
container_title Archives of microbiology
container_volume 200
creator Wang, Chao
Cui, Yanhua
Qu, Xiaojun
description Lactic acid bacteria (LAB) can take advantage of fermentable carbohydrates to produce lactic acid. They are proverbially applied in industry, agricultural production, animal husbandry, food enterprise, pharmaceutical engineering and some other important fields, which are closely related to human life. For performing the probiotic functions, LAB have to face the low pH environment of the gastrointestinal tract. Therefore, acid resistance of LAB is of great importance not only for their own growth, but also for fermentation and preparation of probiotic products. Recent research studies on acid resistance mechanisms of LAB are mainly focused on neutralization process, biofilm and cell density, proton pump, protection of macromolecules, pre-adaptation and cross-protection, and effect of solutes. In this context, biotechnological strategies such as synthetic biology, genome shuffling, high pressure homogenization and adaptive laboratory evolution were also used to improve the acid resistance of LAB to respond to constantly changing low pH environment.
doi_str_mv 10.1007/s00203-017-1446-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1957474227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1957474227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-c5ab00f536676703db773eed0f017db314eb3522978f7733859d279e659e8e493</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMozjj6A9xIwY2b6s2jTbOUYXzAiBsFdyFNbzVDH2PSEfz3ZuioILi6gfPdc08OIacULimAvAoADHgKVKZUiDxle2RKBWcpSPayT6bAgaWF4nxCjkJYAVBWFMUhmTAFMivyfEoWD2jfTOdCGxLTVYlr177_wBa7IenrxFhXJR6DC4PpLCauSxpjB2dHpYxv9M4ck4PaNAFPdnNGnm8WT_O7dPl4ez-_XqaWSzakNjMlQJ3xPJe5BF6VUnLECur4harkVGDJM8aULOqo8CJTFZMK80xhgULxGbkYfWPI9w2GQbcuWGwa02G_CZqqTAopGJMRPf-DrvqN72I6zWJ3gipFIVJ0pKzvQ_BY67V3rfGfmoLedqzHjnUMqLcdaxZ3znbOm7LF6mfju9QIsBEIUepe0f-e_t_1C8HchH8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007419910</pqid></control><display><type>article</type><title>Mechanisms and improvement of acid resistance in lactic acid bacteria</title><source>SpringerNature Journals</source><creator>Wang, Chao ; Cui, Yanhua ; Qu, Xiaojun</creator><creatorcontrib>Wang, Chao ; Cui, Yanhua ; Qu, Xiaojun</creatorcontrib><description>Lactic acid bacteria (LAB) can take advantage of fermentable carbohydrates to produce lactic acid. They are proverbially applied in industry, agricultural production, animal husbandry, food enterprise, pharmaceutical engineering and some other important fields, which are closely related to human life. For performing the probiotic functions, LAB have to face the low pH environment of the gastrointestinal tract. Therefore, acid resistance of LAB is of great importance not only for their own growth, but also for fermentation and preparation of probiotic products. Recent research studies on acid resistance mechanisms of LAB are mainly focused on neutralization process, biofilm and cell density, proton pump, protection of macromolecules, pre-adaptation and cross-protection, and effect of solutes. In this context, biotechnological strategies such as synthetic biology, genome shuffling, high pressure homogenization and adaptive laboratory evolution were also used to improve the acid resistance of LAB to respond to constantly changing low pH environment.</description><identifier>ISSN: 0302-8933</identifier><identifier>EISSN: 1432-072X</identifier><identifier>DOI: 10.1007/s00203-017-1446-2</identifier><identifier>PMID: 29075866</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acid resistance ; Acids ; Agricultural engineering ; Agricultural production ; Animal husbandry ; Bacteria ; Biochemistry ; Biofilms ; Biological effects ; Biological evolution ; Biomedical and Life Sciences ; Biotechnology ; Carbohydrates ; Cell Biology ; Cell density ; Cross-protection ; Ecology ; Fermentation ; Gastrointestinal tract ; Genomes ; High pressure ; Human performance ; Lactic acid ; Lactic acid bacteria ; Life Sciences ; Macromolecules ; Microbial Ecology ; Microbiology ; Mini-Review ; Neutralization ; pH effects ; Probiotics ; Solutes</subject><ispartof>Archives of microbiology, 2018-03, Vol.200 (2), p.195-201</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Archives of Microbiology is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-c5ab00f536676703db773eed0f017db314eb3522978f7733859d279e659e8e493</citedby><cites>FETCH-LOGICAL-c372t-c5ab00f536676703db773eed0f017db314eb3522978f7733859d279e659e8e493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00203-017-1446-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00203-017-1446-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29075866$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Cui, Yanhua</creatorcontrib><creatorcontrib>Qu, Xiaojun</creatorcontrib><title>Mechanisms and improvement of acid resistance in lactic acid bacteria</title><title>Archives of microbiology</title><addtitle>Arch Microbiol</addtitle><addtitle>Arch Microbiol</addtitle><description>Lactic acid bacteria (LAB) can take advantage of fermentable carbohydrates to produce lactic acid. They are proverbially applied in industry, agricultural production, animal husbandry, food enterprise, pharmaceutical engineering and some other important fields, which are closely related to human life. For performing the probiotic functions, LAB have to face the low pH environment of the gastrointestinal tract. Therefore, acid resistance of LAB is of great importance not only for their own growth, but also for fermentation and preparation of probiotic products. Recent research studies on acid resistance mechanisms of LAB are mainly focused on neutralization process, biofilm and cell density, proton pump, protection of macromolecules, pre-adaptation and cross-protection, and effect of solutes. In this context, biotechnological strategies such as synthetic biology, genome shuffling, high pressure homogenization and adaptive laboratory evolution were also used to improve the acid resistance of LAB to respond to constantly changing low pH environment.</description><subject>Acid resistance</subject><subject>Acids</subject><subject>Agricultural engineering</subject><subject>Agricultural production</subject><subject>Animal husbandry</subject><subject>Bacteria</subject><subject>Biochemistry</subject><subject>Biofilms</subject><subject>Biological effects</subject><subject>Biological evolution</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Carbohydrates</subject><subject>Cell Biology</subject><subject>Cell density</subject><subject>Cross-protection</subject><subject>Ecology</subject><subject>Fermentation</subject><subject>Gastrointestinal tract</subject><subject>Genomes</subject><subject>High pressure</subject><subject>Human performance</subject><subject>Lactic acid</subject><subject>Lactic acid bacteria</subject><subject>Life Sciences</subject><subject>Macromolecules</subject><subject>Microbial Ecology</subject><subject>Microbiology</subject><subject>Mini-Review</subject><subject>Neutralization</subject><subject>pH effects</subject><subject>Probiotics</subject><subject>Solutes</subject><issn>0302-8933</issn><issn>1432-072X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLxDAUhYMozjj6A9xIwY2b6s2jTbOUYXzAiBsFdyFNbzVDH2PSEfz3ZuioILi6gfPdc08OIacULimAvAoADHgKVKZUiDxle2RKBWcpSPayT6bAgaWF4nxCjkJYAVBWFMUhmTAFMivyfEoWD2jfTOdCGxLTVYlr177_wBa7IenrxFhXJR6DC4PpLCauSxpjB2dHpYxv9M4ck4PaNAFPdnNGnm8WT_O7dPl4ez-_XqaWSzakNjMlQJ3xPJe5BF6VUnLECur4harkVGDJM8aULOqo8CJTFZMK80xhgULxGbkYfWPI9w2GQbcuWGwa02G_CZqqTAopGJMRPf-DrvqN72I6zWJ3gipFIVJ0pKzvQ_BY67V3rfGfmoLedqzHjnUMqLcdaxZ3znbOm7LF6mfju9QIsBEIUepe0f-e_t_1C8HchH8</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Wang, Chao</creator><creator>Cui, Yanhua</creator><creator>Qu, Xiaojun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20180301</creationdate><title>Mechanisms and improvement of acid resistance in lactic acid bacteria</title><author>Wang, Chao ; Cui, Yanhua ; Qu, Xiaojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-c5ab00f536676703db773eed0f017db314eb3522978f7733859d279e659e8e493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acid resistance</topic><topic>Acids</topic><topic>Agricultural engineering</topic><topic>Agricultural production</topic><topic>Animal husbandry</topic><topic>Bacteria</topic><topic>Biochemistry</topic><topic>Biofilms</topic><topic>Biological effects</topic><topic>Biological evolution</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Carbohydrates</topic><topic>Cell Biology</topic><topic>Cell density</topic><topic>Cross-protection</topic><topic>Ecology</topic><topic>Fermentation</topic><topic>Gastrointestinal tract</topic><topic>Genomes</topic><topic>High pressure</topic><topic>Human performance</topic><topic>Lactic acid</topic><topic>Lactic acid bacteria</topic><topic>Life Sciences</topic><topic>Macromolecules</topic><topic>Microbial Ecology</topic><topic>Microbiology</topic><topic>Mini-Review</topic><topic>Neutralization</topic><topic>pH effects</topic><topic>Probiotics</topic><topic>Solutes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Cui, Yanhua</creatorcontrib><creatorcontrib>Qu, Xiaojun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Archives of microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chao</au><au>Cui, Yanhua</au><au>Qu, Xiaojun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms and improvement of acid resistance in lactic acid bacteria</atitle><jtitle>Archives of microbiology</jtitle><stitle>Arch Microbiol</stitle><addtitle>Arch Microbiol</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>200</volume><issue>2</issue><spage>195</spage><epage>201</epage><pages>195-201</pages><issn>0302-8933</issn><eissn>1432-072X</eissn><abstract>Lactic acid bacteria (LAB) can take advantage of fermentable carbohydrates to produce lactic acid. They are proverbially applied in industry, agricultural production, animal husbandry, food enterprise, pharmaceutical engineering and some other important fields, which are closely related to human life. For performing the probiotic functions, LAB have to face the low pH environment of the gastrointestinal tract. Therefore, acid resistance of LAB is of great importance not only for their own growth, but also for fermentation and preparation of probiotic products. Recent research studies on acid resistance mechanisms of LAB are mainly focused on neutralization process, biofilm and cell density, proton pump, protection of macromolecules, pre-adaptation and cross-protection, and effect of solutes. In this context, biotechnological strategies such as synthetic biology, genome shuffling, high pressure homogenization and adaptive laboratory evolution were also used to improve the acid resistance of LAB to respond to constantly changing low pH environment.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29075866</pmid><doi>10.1007/s00203-017-1446-2</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-8933
ispartof Archives of microbiology, 2018-03, Vol.200 (2), p.195-201
issn 0302-8933
1432-072X
language eng
recordid cdi_proquest_miscellaneous_1957474227
source SpringerNature Journals
subjects Acid resistance
Acids
Agricultural engineering
Agricultural production
Animal husbandry
Bacteria
Biochemistry
Biofilms
Biological effects
Biological evolution
Biomedical and Life Sciences
Biotechnology
Carbohydrates
Cell Biology
Cell density
Cross-protection
Ecology
Fermentation
Gastrointestinal tract
Genomes
High pressure
Human performance
Lactic acid
Lactic acid bacteria
Life Sciences
Macromolecules
Microbial Ecology
Microbiology
Mini-Review
Neutralization
pH effects
Probiotics
Solutes
title Mechanisms and improvement of acid resistance in lactic acid bacteria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A09%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20and%20improvement%20of%20acid%20resistance%20in%20lactic%20acid%20bacteria&rft.jtitle=Archives%20of%20microbiology&rft.au=Wang,%20Chao&rft.date=2018-03-01&rft.volume=200&rft.issue=2&rft.spage=195&rft.epage=201&rft.pages=195-201&rft.issn=0302-8933&rft.eissn=1432-072X&rft_id=info:doi/10.1007/s00203-017-1446-2&rft_dat=%3Cproquest_cross%3E1957474227%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2007419910&rft_id=info:pmid/29075866&rfr_iscdi=true