Minimal levels of cold-adaptation in postsynaptic currents of a subantarctic teleost, Notothenia rossii (Perciformes: Notothenioidei Nototheniidae)
As a part of the ICEFISH04 project on the RVIB Nathaniel B. Palmer, miniature end plate currents (MEPCs) were recorded from the extraocular muscles of Notothenia rossii captured at King Edward Point, South Georgia. A total of 1,176 MEPCs were recorded from the inferior oblique extraocular muscles of...
Gespeichert in:
Veröffentlicht in: | Polar biology 2007-05, Vol.30 (6), p.797-807 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 807 |
---|---|
container_issue | 6 |
container_start_page | 797 |
container_title | Polar biology |
container_volume | 30 |
creator | MACDONALD, John A |
description | As a part of the ICEFISH04 project on the RVIB Nathaniel B. Palmer, miniature end plate currents (MEPCs) were recorded from the extraocular muscles of Notothenia rossii captured at King Edward Point, South Georgia. A total of 1,176 MEPCs were recorded from the inferior oblique extraocular muscles of four specimens, over a temperature range of 1–12°C. The MEPCs were normal in form, with a rapid quasi-linear increase in inward current (typically |
doi_str_mv | 10.1007/s00300-006-0239-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19574324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19574324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-1969154f375ab04d8064e7d0495fff20694b925d28b7ccc9e8ed3310bae518173</originalsourceid><addsrcrecordid>eNpdkdFqFTEQhhex4LH6AN4FQVEwdbLJbjbeSbFVaKsXeh2y2Qmm5CTHJCvtc_jC5ngKB7waZv5vhpn5u-4FgzMGIN8XAA5AAUYKPVf07lG3YYL3tIdhfNxtQPY9FTDCk-5pKbcATI5Cbbo_1z76rQkk4G8MhSRHbAoLNYvZVVN9isRHskullvvYSt4Su-aMsf5jDSnrbGI12e6ligEb-o7cpJrqT4zekJxK8Z68-YbZepfyFsuHo578gv6Y-sXg22fdiTOh4POHeNr9uPj0_fwzvfp6-eX84xW1nPNKmRoVG4TjcjAziGWCUaBcQKjBOdfDqMSs-mHpp1laaxVOuHDOYDY4sIlJftq9Pszd5fRrxVL11heLIZiIaS2aqUG2F4oGvvwPvE1rjm03PTIuOeMCGsQOkN1fnNHpXW6fzfeagd57pA8e6eaR3nuk71rPq4fBplgTXDbR-nJsnKRgA2P8LwvklC8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>613731340</pqid></control><display><type>article</type><title>Minimal levels of cold-adaptation in postsynaptic currents of a subantarctic teleost, Notothenia rossii (Perciformes: Notothenioidei Nototheniidae)</title><source>SpringerLink Journals - AutoHoldings</source><creator>MACDONALD, John A</creator><creatorcontrib>MACDONALD, John A</creatorcontrib><description>As a part of the ICEFISH04 project on the RVIB Nathaniel B. Palmer, miniature end plate currents (MEPCs) were recorded from the extraocular muscles of Notothenia rossii captured at King Edward Point, South Georgia. A total of 1,176 MEPCs were recorded from the inferior oblique extraocular muscles of four specimens, over a temperature range of 1–12°C. The MEPCs were normal in form, with a rapid quasi-linear increase in inward current (typically <500 μs), followed by a slower exponential decay of the inward current to baseline. Exponential decay rates were calculated for individual MEPCs by linear regression of the log-transformed data, and converted to exponential time constants (τ). Only those MEPCs that fit the exponential model well, with r2 ≥ 0.95 (or in some cases r2 ≥ 0.99) were used for further calculations. At temperatures between 1 and 2°C, τ ranged from about 2,000 to 4,000 μs, similar to values extrapolated for temperate teleosts at the same temperature, but significantly longer than τ from MEPCs of high-latitude Antarctic nototheniids. Between 11 and 12°C, τ values for the N. rossii MEPCS were mainly between 1,100 and 1,700 μs, giving a Q10 of 2.05. An Arrhenius plot and linear regression were used to describe the effect of changing temperature on the decay phase of the N. rossii MEPCs: −ln τ = 27.887−6078/K, yielding an Arrhenius temperature coefficient (μ or apparent Ea) of −50.5 ± 2.9 (95% CL) kJ mol−1 deg−1. When compared with other nototheniids, these results showed that the neuromuscular junctions of N. rossii are compensated for low temperature, but not to the same degree as those of high Antarctic species.</description><identifier>ISSN: 0722-4060</identifier><identifier>EISSN: 1432-2056</identifier><identifier>DOI: 10.1007/s00300-006-0239-x</identifier><identifier>CODEN: POBIDP</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Agnatha. Pisces ; Animal and plant ecology ; Animal, plant and microbial ecology ; Animals ; Autoecology ; Biological and medical sciences ; Central nervous system ; Constants ; Decay ; Decay rate ; Electrophysiology ; End plates ; Fundamental and applied biological sciences. Psychology ; Low temperature ; Marine fishes ; Muscles ; Neuromuscular junctions ; Notothenia ; Notothenia rossii ; Nototheniidae ; Notothenioidei ; Oculomotor system ; Perciformes ; Regressions ; Teleostei ; Temperature ; Vertebrata ; Vertebrates: nervous system and sense organs</subject><ispartof>Polar biology, 2007-05, Vol.30 (6), p.797-807</ispartof><rights>2007 INIST-CNRS</rights><rights>Springer-Verlag 2007.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-1969154f375ab04d8064e7d0495fff20694b925d28b7ccc9e8ed3310bae518173</citedby><cites>FETCH-LOGICAL-c333t-1969154f375ab04d8064e7d0495fff20694b925d28b7ccc9e8ed3310bae518173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18741511$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>MACDONALD, John A</creatorcontrib><title>Minimal levels of cold-adaptation in postsynaptic currents of a subantarctic teleost, Notothenia rossii (Perciformes: Notothenioidei Nototheniidae)</title><title>Polar biology</title><description>As a part of the ICEFISH04 project on the RVIB Nathaniel B. Palmer, miniature end plate currents (MEPCs) were recorded from the extraocular muscles of Notothenia rossii captured at King Edward Point, South Georgia. A total of 1,176 MEPCs were recorded from the inferior oblique extraocular muscles of four specimens, over a temperature range of 1–12°C. The MEPCs were normal in form, with a rapid quasi-linear increase in inward current (typically <500 μs), followed by a slower exponential decay of the inward current to baseline. Exponential decay rates were calculated for individual MEPCs by linear regression of the log-transformed data, and converted to exponential time constants (τ). Only those MEPCs that fit the exponential model well, with r2 ≥ 0.95 (or in some cases r2 ≥ 0.99) were used for further calculations. At temperatures between 1 and 2°C, τ ranged from about 2,000 to 4,000 μs, similar to values extrapolated for temperate teleosts at the same temperature, but significantly longer than τ from MEPCs of high-latitude Antarctic nototheniids. Between 11 and 12°C, τ values for the N. rossii MEPCS were mainly between 1,100 and 1,700 μs, giving a Q10 of 2.05. An Arrhenius plot and linear regression were used to describe the effect of changing temperature on the decay phase of the N. rossii MEPCs: −ln τ = 27.887−6078/K, yielding an Arrhenius temperature coefficient (μ or apparent Ea) of −50.5 ± 2.9 (95% CL) kJ mol−1 deg−1. When compared with other nototheniids, these results showed that the neuromuscular junctions of N. rossii are compensated for low temperature, but not to the same degree as those of high Antarctic species.</description><subject>Agnatha. Pisces</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Autoecology</subject><subject>Biological and medical sciences</subject><subject>Central nervous system</subject><subject>Constants</subject><subject>Decay</subject><subject>Decay rate</subject><subject>Electrophysiology</subject><subject>End plates</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Low temperature</subject><subject>Marine fishes</subject><subject>Muscles</subject><subject>Neuromuscular junctions</subject><subject>Notothenia</subject><subject>Notothenia rossii</subject><subject>Nototheniidae</subject><subject>Notothenioidei</subject><subject>Oculomotor system</subject><subject>Perciformes</subject><subject>Regressions</subject><subject>Teleostei</subject><subject>Temperature</subject><subject>Vertebrata</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0722-4060</issn><issn>1432-2056</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkdFqFTEQhhex4LH6AN4FQVEwdbLJbjbeSbFVaKsXeh2y2Qmm5CTHJCvtc_jC5ngKB7waZv5vhpn5u-4FgzMGIN8XAA5AAUYKPVf07lG3YYL3tIdhfNxtQPY9FTDCk-5pKbcATI5Cbbo_1z76rQkk4G8MhSRHbAoLNYvZVVN9isRHskullvvYSt4Su-aMsf5jDSnrbGI12e6ligEb-o7cpJrqT4zekJxK8Z68-YbZepfyFsuHo578gv6Y-sXg22fdiTOh4POHeNr9uPj0_fwzvfp6-eX84xW1nPNKmRoVG4TjcjAziGWCUaBcQKjBOdfDqMSs-mHpp1laaxVOuHDOYDY4sIlJftq9Pszd5fRrxVL11heLIZiIaS2aqUG2F4oGvvwPvE1rjm03PTIuOeMCGsQOkN1fnNHpXW6fzfeagd57pA8e6eaR3nuk71rPq4fBplgTXDbR-nJsnKRgA2P8LwvklC8</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>MACDONALD, John A</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20070501</creationdate><title>Minimal levels of cold-adaptation in postsynaptic currents of a subantarctic teleost, Notothenia rossii (Perciformes: Notothenioidei Nototheniidae)</title><author>MACDONALD, John A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-1969154f375ab04d8064e7d0495fff20694b925d28b7ccc9e8ed3310bae518173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Agnatha. Pisces</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Autoecology</topic><topic>Biological and medical sciences</topic><topic>Central nervous system</topic><topic>Constants</topic><topic>Decay</topic><topic>Decay rate</topic><topic>Electrophysiology</topic><topic>End plates</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Low temperature</topic><topic>Marine fishes</topic><topic>Muscles</topic><topic>Neuromuscular junctions</topic><topic>Notothenia</topic><topic>Notothenia rossii</topic><topic>Nototheniidae</topic><topic>Notothenioidei</topic><topic>Oculomotor system</topic><topic>Perciformes</topic><topic>Regressions</topic><topic>Teleostei</topic><topic>Temperature</topic><topic>Vertebrata</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MACDONALD, John A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Polar biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MACDONALD, John A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimal levels of cold-adaptation in postsynaptic currents of a subantarctic teleost, Notothenia rossii (Perciformes: Notothenioidei Nototheniidae)</atitle><jtitle>Polar biology</jtitle><date>2007-05-01</date><risdate>2007</risdate><volume>30</volume><issue>6</issue><spage>797</spage><epage>807</epage><pages>797-807</pages><issn>0722-4060</issn><eissn>1432-2056</eissn><coden>POBIDP</coden><abstract>As a part of the ICEFISH04 project on the RVIB Nathaniel B. Palmer, miniature end plate currents (MEPCs) were recorded from the extraocular muscles of Notothenia rossii captured at King Edward Point, South Georgia. A total of 1,176 MEPCs were recorded from the inferior oblique extraocular muscles of four specimens, over a temperature range of 1–12°C. The MEPCs were normal in form, with a rapid quasi-linear increase in inward current (typically <500 μs), followed by a slower exponential decay of the inward current to baseline. Exponential decay rates were calculated for individual MEPCs by linear regression of the log-transformed data, and converted to exponential time constants (τ). Only those MEPCs that fit the exponential model well, with r2 ≥ 0.95 (or in some cases r2 ≥ 0.99) were used for further calculations. At temperatures between 1 and 2°C, τ ranged from about 2,000 to 4,000 μs, similar to values extrapolated for temperate teleosts at the same temperature, but significantly longer than τ from MEPCs of high-latitude Antarctic nototheniids. Between 11 and 12°C, τ values for the N. rossii MEPCS were mainly between 1,100 and 1,700 μs, giving a Q10 of 2.05. An Arrhenius plot and linear regression were used to describe the effect of changing temperature on the decay phase of the N. rossii MEPCs: −ln τ = 27.887−6078/K, yielding an Arrhenius temperature coefficient (μ or apparent Ea) of −50.5 ± 2.9 (95% CL) kJ mol−1 deg−1. When compared with other nototheniids, these results showed that the neuromuscular junctions of N. rossii are compensated for low temperature, but not to the same degree as those of high Antarctic species.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><pub>Springer</pub><doi>10.1007/s00300-006-0239-x</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0722-4060 |
ispartof | Polar biology, 2007-05, Vol.30 (6), p.797-807 |
issn | 0722-4060 1432-2056 |
language | eng |
recordid | cdi_proquest_miscellaneous_19574324 |
source | SpringerLink Journals - AutoHoldings |
subjects | Agnatha. Pisces Animal and plant ecology Animal, plant and microbial ecology Animals Autoecology Biological and medical sciences Central nervous system Constants Decay Decay rate Electrophysiology End plates Fundamental and applied biological sciences. Psychology Low temperature Marine fishes Muscles Neuromuscular junctions Notothenia Notothenia rossii Nototheniidae Notothenioidei Oculomotor system Perciformes Regressions Teleostei Temperature Vertebrata Vertebrates: nervous system and sense organs |
title | Minimal levels of cold-adaptation in postsynaptic currents of a subantarctic teleost, Notothenia rossii (Perciformes: Notothenioidei Nototheniidae) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A55%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimal%20levels%20of%20cold-adaptation%20in%20postsynaptic%20currents%20of%20a%20subantarctic%20teleost,%20Notothenia%20rossii%20(Perciformes:%20Notothenioidei%20Nototheniidae)&rft.jtitle=Polar%20biology&rft.au=MACDONALD,%20John%20A&rft.date=2007-05-01&rft.volume=30&rft.issue=6&rft.spage=797&rft.epage=807&rft.pages=797-807&rft.issn=0722-4060&rft.eissn=1432-2056&rft.coden=POBIDP&rft_id=info:doi/10.1007/s00300-006-0239-x&rft_dat=%3Cproquest_cross%3E19574324%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=613731340&rft_id=info:pmid/&rfr_iscdi=true |