IGF-I mediates regeneration of endocrine pancreas by increasing beta cell replication through cell cycle protein modulation in mice

Aims/hypothesis Recovery from diabetes requires restoration of beta cell mass. Igf1 expression in beta cells of transgenic mice regenerates the endocrine pancreas during type 1 diabetes. However, the IGF-I-mediated mechanism(s) restoring beta cell mass are not fully understood. Here, we examined the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetologia 2008-10, Vol.51 (10), p.1862-1872
Hauptverfasser: Agudo, J, Ayuso, E, Jimenez, V, Salavert, A, Casellas, A, Tafuro, S, Haurigot, V, Ruberte, J, Segovia, J. C, Bueren, J, Bosch, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1872
container_issue 10
container_start_page 1862
container_title Diabetologia
container_volume 51
creator Agudo, J
Ayuso, E
Jimenez, V
Salavert, A
Casellas, A
Tafuro, S
Haurigot, V
Ruberte, J
Segovia, J. C
Bueren, J
Bosch, F
description Aims/hypothesis Recovery from diabetes requires restoration of beta cell mass. Igf1 expression in beta cells of transgenic mice regenerates the endocrine pancreas during type 1 diabetes. However, the IGF-I-mediated mechanism(s) restoring beta cell mass are not fully understood. Here, we examined the contribution of pre-existing beta cell proliferation and transdifferentiation of progenitor cells from bone marrow in IGF-I-induced islet regeneration. Methods Streptozotocin (STZ)-treated Igf1-expressing transgenic mice transplanted with green fluorescent protein (GFP)-expressing bone marrow cells were used. Bone marrow cell transdifferentiation and beta cell replication were measured by GFP/insulin and by the antigen identified by monoclonal antibody Ki67/insulin immunostaining of pancreatic sections respectively. Key cell cycle proteins were measured by western blot, quantitative RT-PCR and immunohistochemistry. Results Despite elevated IGF-I production, recruitment and differentiation of bone marrow cells to beta cells was not increased either in healthy or STZ-treated transgenic mice. In contrast, after STZ treatment, IGF-I overproduction decreased beta cell apoptosis and increased beta cell replication by modulating key cell cycle proteins. Decreased nuclear levels of cyclin-dependent kinase inhibitor 1B (p27) and increased nuclear localisation of cyclin-dependent kinase (CDK)-4 were consistent with increased beta cell proliferation. However, islet expression of cyclin D1 increased only after STZ treatment. In contrast, higher levels of cyclin-dependent kinase inhibitor 1A (p21) were detected in islets from non-STZ-treated transgenic mice. Conclusions/interpretation These findings indicate that IGF-I modulates cell cycle proteins and increases replication of pre-existing beta cells after damage. Therefore, our study suggests that local production of IGF-I may be a safe approach to regenerate endocrine pancreas to reverse diabetes.
doi_str_mv 10.1007/s00125-008-1087-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19570140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1549289571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-a1650aff8ce0121341f704c5ebb108c0dac26864a52b698c7a2712860665cec03</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS0EotPCA7ABCwl2gevfeJZVRctIlVhAJXaW47mZusrYg50sZs2L4yijVmKBWDnO_c7xuTqEvGHwiQG0nwsA46oBMA0D0zbmGVkxKXgDkpvnZDWPG2b0zzNyXsoDAAgl9UtyVv9pUZkV-b25uW42dI_b4EYsNOMOI2Y3hhRp6inGbfI5RKQHF31GV2h3pGH5DHFHOxwd9TgMVXoYgl-U431O0-5-GfijH6o-pxFDpPu0nYaFmm_B4yvyondDwden84LcXX_5cfW1uf12s7m6vG28WsuxcUwrcH1vPNa9mJCsb0F6hV1Xt_ewdZ5ro6VTvNNr41vHW8aNBq2VRw_ignxcfGuUXxOW0e5DmRO6iGkqlq1VC0z-F6hUK00F3_8FPqQpx7qErQGNFMyICrEF8jmVkrG3hxz2Lh8tAzv3aJcebe3Rzj3a2fjtyXjqajdPilNxFfhwAlzxbuhzbSeUR46DFhwkqxxfuFJHcYf5KeG_Xn-3iHqXrNvlanz3nQMTwJRQmoH4AzEQvog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213843183</pqid></control><display><type>article</type><title>IGF-I mediates regeneration of endocrine pancreas by increasing beta cell replication through cell cycle protein modulation in mice</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Agudo, J ; Ayuso, E ; Jimenez, V ; Salavert, A ; Casellas, A ; Tafuro, S ; Haurigot, V ; Ruberte, J ; Segovia, J. C ; Bueren, J ; Bosch, F</creator><creatorcontrib>Agudo, J ; Ayuso, E ; Jimenez, V ; Salavert, A ; Casellas, A ; Tafuro, S ; Haurigot, V ; Ruberte, J ; Segovia, J. C ; Bueren, J ; Bosch, F</creatorcontrib><description>Aims/hypothesis Recovery from diabetes requires restoration of beta cell mass. Igf1 expression in beta cells of transgenic mice regenerates the endocrine pancreas during type 1 diabetes. However, the IGF-I-mediated mechanism(s) restoring beta cell mass are not fully understood. Here, we examined the contribution of pre-existing beta cell proliferation and transdifferentiation of progenitor cells from bone marrow in IGF-I-induced islet regeneration. Methods Streptozotocin (STZ)-treated Igf1-expressing transgenic mice transplanted with green fluorescent protein (GFP)-expressing bone marrow cells were used. Bone marrow cell transdifferentiation and beta cell replication were measured by GFP/insulin and by the antigen identified by monoclonal antibody Ki67/insulin immunostaining of pancreatic sections respectively. Key cell cycle proteins were measured by western blot, quantitative RT-PCR and immunohistochemistry. Results Despite elevated IGF-I production, recruitment and differentiation of bone marrow cells to beta cells was not increased either in healthy or STZ-treated transgenic mice. In contrast, after STZ treatment, IGF-I overproduction decreased beta cell apoptosis and increased beta cell replication by modulating key cell cycle proteins. Decreased nuclear levels of cyclin-dependent kinase inhibitor 1B (p27) and increased nuclear localisation of cyclin-dependent kinase (CDK)-4 were consistent with increased beta cell proliferation. However, islet expression of cyclin D1 increased only after STZ treatment. In contrast, higher levels of cyclin-dependent kinase inhibitor 1A (p21) were detected in islets from non-STZ-treated transgenic mice. Conclusions/interpretation These findings indicate that IGF-I modulates cell cycle proteins and increases replication of pre-existing beta cells after damage. Therefore, our study suggests that local production of IGF-I may be a safe approach to regenerate endocrine pancreas to reverse diabetes.</description><identifier>ISSN: 0012-186X</identifier><identifier>EISSN: 1432-0428</identifier><identifier>DOI: 10.1007/s00125-008-1087-8</identifier><identifier>PMID: 18663428</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Animals ; Antigens ; Apoptosis ; Apoptosis - drug effects ; Beta cells ; Biological and medical sciences ; Blood Glucose - metabolism ; Blotting, Western ; Bone marrow ; Bone Marrow Cells - cytology ; Bone Marrow Cells - metabolism ; Bone Marrow Transplantation - methods ; Bone marrow-derived cells ; Cell cycle ; Cell Cycle - drug effects ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell Division - drug effects ; Cell growth ; Cyclin-dependent kinases ; Diabetes ; Diabetes. Impaired glucose tolerance ; Endocrine pancreas. Apud cells (diseases) ; Endocrinopathies ; Etiopathogenesis. Screening. Investigations. Target tissue resistance ; Gene therapy ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Human Physiology ; Hyperglycemia ; Immunohistochemistry ; Insulin resistance ; Insulin-Like Growth Factor I - genetics ; Insulin-Like Growth Factor I - metabolism ; Insulin-Secreting Cells - cytology ; Insulin-Secreting Cells - drug effects ; Insulin-Secreting Cells - metabolism ; Internal Medicine ; Islet regeneration ; Islets of Langerhans - cytology ; Islets of Langerhans - metabolism ; Kinases ; Medical sciences ; Medicine ; Medicine &amp; Public Health ; Metabolic Diseases ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Monoclonal antibodies ; Pancreas ; Proteins ; Replication ; Reverse Transcriptase Polymerase Chain Reaction ; Streptozocin - pharmacology ; Transgenic animals ; Veterinary colleges ; Veterinary medicine</subject><ispartof>Diabetologia, 2008-10, Vol.51 (10), p.1862-1872</ispartof><rights>Springer-Verlag 2008</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-a1650aff8ce0121341f704c5ebb108c0dac26864a52b698c7a2712860665cec03</citedby><cites>FETCH-LOGICAL-c594t-a1650aff8ce0121341f704c5ebb108c0dac26864a52b698c7a2712860665cec03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00125-008-1087-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00125-008-1087-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20632041$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18663428$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Agudo, J</creatorcontrib><creatorcontrib>Ayuso, E</creatorcontrib><creatorcontrib>Jimenez, V</creatorcontrib><creatorcontrib>Salavert, A</creatorcontrib><creatorcontrib>Casellas, A</creatorcontrib><creatorcontrib>Tafuro, S</creatorcontrib><creatorcontrib>Haurigot, V</creatorcontrib><creatorcontrib>Ruberte, J</creatorcontrib><creatorcontrib>Segovia, J. C</creatorcontrib><creatorcontrib>Bueren, J</creatorcontrib><creatorcontrib>Bosch, F</creatorcontrib><title>IGF-I mediates regeneration of endocrine pancreas by increasing beta cell replication through cell cycle protein modulation in mice</title><title>Diabetologia</title><addtitle>Diabetologia</addtitle><addtitle>Diabetologia</addtitle><description>Aims/hypothesis Recovery from diabetes requires restoration of beta cell mass. Igf1 expression in beta cells of transgenic mice regenerates the endocrine pancreas during type 1 diabetes. However, the IGF-I-mediated mechanism(s) restoring beta cell mass are not fully understood. Here, we examined the contribution of pre-existing beta cell proliferation and transdifferentiation of progenitor cells from bone marrow in IGF-I-induced islet regeneration. Methods Streptozotocin (STZ)-treated Igf1-expressing transgenic mice transplanted with green fluorescent protein (GFP)-expressing bone marrow cells were used. Bone marrow cell transdifferentiation and beta cell replication were measured by GFP/insulin and by the antigen identified by monoclonal antibody Ki67/insulin immunostaining of pancreatic sections respectively. Key cell cycle proteins were measured by western blot, quantitative RT-PCR and immunohistochemistry. Results Despite elevated IGF-I production, recruitment and differentiation of bone marrow cells to beta cells was not increased either in healthy or STZ-treated transgenic mice. In contrast, after STZ treatment, IGF-I overproduction decreased beta cell apoptosis and increased beta cell replication by modulating key cell cycle proteins. Decreased nuclear levels of cyclin-dependent kinase inhibitor 1B (p27) and increased nuclear localisation of cyclin-dependent kinase (CDK)-4 were consistent with increased beta cell proliferation. However, islet expression of cyclin D1 increased only after STZ treatment. In contrast, higher levels of cyclin-dependent kinase inhibitor 1A (p21) were detected in islets from non-STZ-treated transgenic mice. Conclusions/interpretation These findings indicate that IGF-I modulates cell cycle proteins and increases replication of pre-existing beta cells after damage. Therefore, our study suggests that local production of IGF-I may be a safe approach to regenerate endocrine pancreas to reverse diabetes.</description><subject>Animals</subject><subject>Antigens</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Beta cells</subject><subject>Biological and medical sciences</subject><subject>Blood Glucose - metabolism</subject><subject>Blotting, Western</subject><subject>Bone marrow</subject><subject>Bone Marrow Cells - cytology</subject><subject>Bone Marrow Cells - metabolism</subject><subject>Bone Marrow Transplantation - methods</subject><subject>Bone marrow-derived cells</subject><subject>Cell cycle</subject><subject>Cell Cycle - drug effects</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Division - drug effects</subject><subject>Cell growth</subject><subject>Cyclin-dependent kinases</subject><subject>Diabetes</subject><subject>Diabetes. Impaired glucose tolerance</subject><subject>Endocrine pancreas. Apud cells (diseases)</subject><subject>Endocrinopathies</subject><subject>Etiopathogenesis. Screening. Investigations. Target tissue resistance</subject><subject>Gene therapy</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Human Physiology</subject><subject>Hyperglycemia</subject><subject>Immunohistochemistry</subject><subject>Insulin resistance</subject><subject>Insulin-Like Growth Factor I - genetics</subject><subject>Insulin-Like Growth Factor I - metabolism</subject><subject>Insulin-Secreting Cells - cytology</subject><subject>Insulin-Secreting Cells - drug effects</subject><subject>Insulin-Secreting Cells - metabolism</subject><subject>Internal Medicine</subject><subject>Islet regeneration</subject><subject>Islets of Langerhans - cytology</subject><subject>Islets of Langerhans - metabolism</subject><subject>Kinases</subject><subject>Medical sciences</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metabolic Diseases</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Monoclonal antibodies</subject><subject>Pancreas</subject><subject>Proteins</subject><subject>Replication</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Streptozocin - pharmacology</subject><subject>Transgenic animals</subject><subject>Veterinary colleges</subject><subject>Veterinary medicine</subject><issn>0012-186X</issn><issn>1432-0428</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNqNkc1u1DAUhS0EotPCA7ABCwl2gevfeJZVRctIlVhAJXaW47mZusrYg50sZs2L4yijVmKBWDnO_c7xuTqEvGHwiQG0nwsA46oBMA0D0zbmGVkxKXgDkpvnZDWPG2b0zzNyXsoDAAgl9UtyVv9pUZkV-b25uW42dI_b4EYsNOMOI2Y3hhRp6inGbfI5RKQHF31GV2h3pGH5DHFHOxwd9TgMVXoYgl-U431O0-5-GfijH6o-pxFDpPu0nYaFmm_B4yvyondDwden84LcXX_5cfW1uf12s7m6vG28WsuxcUwrcH1vPNa9mJCsb0F6hV1Xt_ewdZ5ro6VTvNNr41vHW8aNBq2VRw_ignxcfGuUXxOW0e5DmRO6iGkqlq1VC0z-F6hUK00F3_8FPqQpx7qErQGNFMyICrEF8jmVkrG3hxz2Lh8tAzv3aJcebe3Rzj3a2fjtyXjqajdPilNxFfhwAlzxbuhzbSeUR46DFhwkqxxfuFJHcYf5KeG_Xn-3iHqXrNvlanz3nQMTwJRQmoH4AzEQvog</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Agudo, J</creator><creator>Ayuso, E</creator><creator>Jimenez, V</creator><creator>Salavert, A</creator><creator>Casellas, A</creator><creator>Tafuro, S</creator><creator>Haurigot, V</creator><creator>Ruberte, J</creator><creator>Segovia, J. C</creator><creator>Bueren, J</creator><creator>Bosch, F</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20081001</creationdate><title>IGF-I mediates regeneration of endocrine pancreas by increasing beta cell replication through cell cycle protein modulation in mice</title><author>Agudo, J ; Ayuso, E ; Jimenez, V ; Salavert, A ; Casellas, A ; Tafuro, S ; Haurigot, V ; Ruberte, J ; Segovia, J. C ; Bueren, J ; Bosch, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-a1650aff8ce0121341f704c5ebb108c0dac26864a52b698c7a2712860665cec03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Antigens</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Beta cells</topic><topic>Biological and medical sciences</topic><topic>Blood Glucose - metabolism</topic><topic>Blotting, Western</topic><topic>Bone marrow</topic><topic>Bone Marrow Cells - cytology</topic><topic>Bone Marrow Cells - metabolism</topic><topic>Bone Marrow Transplantation - methods</topic><topic>Bone marrow-derived cells</topic><topic>Cell cycle</topic><topic>Cell Cycle - drug effects</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Division - drug effects</topic><topic>Cell growth</topic><topic>Cyclin-dependent kinases</topic><topic>Diabetes</topic><topic>Diabetes. Impaired glucose tolerance</topic><topic>Endocrine pancreas. Apud cells (diseases)</topic><topic>Endocrinopathies</topic><topic>Etiopathogenesis. Screening. Investigations. Target tissue resistance</topic><topic>Gene therapy</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Human Physiology</topic><topic>Hyperglycemia</topic><topic>Immunohistochemistry</topic><topic>Insulin resistance</topic><topic>Insulin-Like Growth Factor I - genetics</topic><topic>Insulin-Like Growth Factor I - metabolism</topic><topic>Insulin-Secreting Cells - cytology</topic><topic>Insulin-Secreting Cells - drug effects</topic><topic>Insulin-Secreting Cells - metabolism</topic><topic>Internal Medicine</topic><topic>Islet regeneration</topic><topic>Islets of Langerhans - cytology</topic><topic>Islets of Langerhans - metabolism</topic><topic>Kinases</topic><topic>Medical sciences</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metabolic Diseases</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Monoclonal antibodies</topic><topic>Pancreas</topic><topic>Proteins</topic><topic>Replication</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Streptozocin - pharmacology</topic><topic>Transgenic animals</topic><topic>Veterinary colleges</topic><topic>Veterinary medicine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agudo, J</creatorcontrib><creatorcontrib>Ayuso, E</creatorcontrib><creatorcontrib>Jimenez, V</creatorcontrib><creatorcontrib>Salavert, A</creatorcontrib><creatorcontrib>Casellas, A</creatorcontrib><creatorcontrib>Tafuro, S</creatorcontrib><creatorcontrib>Haurigot, V</creatorcontrib><creatorcontrib>Ruberte, J</creatorcontrib><creatorcontrib>Segovia, J. C</creatorcontrib><creatorcontrib>Bueren, J</creatorcontrib><creatorcontrib>Bosch, F</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Diabetologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agudo, J</au><au>Ayuso, E</au><au>Jimenez, V</au><au>Salavert, A</au><au>Casellas, A</au><au>Tafuro, S</au><au>Haurigot, V</au><au>Ruberte, J</au><au>Segovia, J. C</au><au>Bueren, J</au><au>Bosch, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IGF-I mediates regeneration of endocrine pancreas by increasing beta cell replication through cell cycle protein modulation in mice</atitle><jtitle>Diabetologia</jtitle><stitle>Diabetologia</stitle><addtitle>Diabetologia</addtitle><date>2008-10-01</date><risdate>2008</risdate><volume>51</volume><issue>10</issue><spage>1862</spage><epage>1872</epage><pages>1862-1872</pages><issn>0012-186X</issn><eissn>1432-0428</eissn><abstract>Aims/hypothesis Recovery from diabetes requires restoration of beta cell mass. Igf1 expression in beta cells of transgenic mice regenerates the endocrine pancreas during type 1 diabetes. However, the IGF-I-mediated mechanism(s) restoring beta cell mass are not fully understood. Here, we examined the contribution of pre-existing beta cell proliferation and transdifferentiation of progenitor cells from bone marrow in IGF-I-induced islet regeneration. Methods Streptozotocin (STZ)-treated Igf1-expressing transgenic mice transplanted with green fluorescent protein (GFP)-expressing bone marrow cells were used. Bone marrow cell transdifferentiation and beta cell replication were measured by GFP/insulin and by the antigen identified by monoclonal antibody Ki67/insulin immunostaining of pancreatic sections respectively. Key cell cycle proteins were measured by western blot, quantitative RT-PCR and immunohistochemistry. Results Despite elevated IGF-I production, recruitment and differentiation of bone marrow cells to beta cells was not increased either in healthy or STZ-treated transgenic mice. In contrast, after STZ treatment, IGF-I overproduction decreased beta cell apoptosis and increased beta cell replication by modulating key cell cycle proteins. Decreased nuclear levels of cyclin-dependent kinase inhibitor 1B (p27) and increased nuclear localisation of cyclin-dependent kinase (CDK)-4 were consistent with increased beta cell proliferation. However, islet expression of cyclin D1 increased only after STZ treatment. In contrast, higher levels of cyclin-dependent kinase inhibitor 1A (p21) were detected in islets from non-STZ-treated transgenic mice. Conclusions/interpretation These findings indicate that IGF-I modulates cell cycle proteins and increases replication of pre-existing beta cells after damage. Therefore, our study suggests that local production of IGF-I may be a safe approach to regenerate endocrine pancreas to reverse diabetes.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>18663428</pmid><doi>10.1007/s00125-008-1087-8</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-186X
ispartof Diabetologia, 2008-10, Vol.51 (10), p.1862-1872
issn 0012-186X
1432-0428
language eng
recordid cdi_proquest_miscellaneous_19570140
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Animals
Antigens
Apoptosis
Apoptosis - drug effects
Beta cells
Biological and medical sciences
Blood Glucose - metabolism
Blotting, Western
Bone marrow
Bone Marrow Cells - cytology
Bone Marrow Cells - metabolism
Bone Marrow Transplantation - methods
Bone marrow-derived cells
Cell cycle
Cell Cycle - drug effects
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Cell Division - drug effects
Cell growth
Cyclin-dependent kinases
Diabetes
Diabetes. Impaired glucose tolerance
Endocrine pancreas. Apud cells (diseases)
Endocrinopathies
Etiopathogenesis. Screening. Investigations. Target tissue resistance
Gene therapy
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
Human Physiology
Hyperglycemia
Immunohistochemistry
Insulin resistance
Insulin-Like Growth Factor I - genetics
Insulin-Like Growth Factor I - metabolism
Insulin-Secreting Cells - cytology
Insulin-Secreting Cells - drug effects
Insulin-Secreting Cells - metabolism
Internal Medicine
Islet regeneration
Islets of Langerhans - cytology
Islets of Langerhans - metabolism
Kinases
Medical sciences
Medicine
Medicine & Public Health
Metabolic Diseases
Mice
Mice, Inbred C57BL
Mice, Transgenic
Monoclonal antibodies
Pancreas
Proteins
Replication
Reverse Transcriptase Polymerase Chain Reaction
Streptozocin - pharmacology
Transgenic animals
Veterinary colleges
Veterinary medicine
title IGF-I mediates regeneration of endocrine pancreas by increasing beta cell replication through cell cycle protein modulation in mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A26%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IGF-I%20mediates%20regeneration%20of%20endocrine%20pancreas%20by%20increasing%20beta%20cell%20replication%20through%20cell%20cycle%20protein%20modulation%20in%20mice&rft.jtitle=Diabetologia&rft.au=Agudo,%20J&rft.date=2008-10-01&rft.volume=51&rft.issue=10&rft.spage=1862&rft.epage=1872&rft.pages=1862-1872&rft.issn=0012-186X&rft.eissn=1432-0428&rft_id=info:doi/10.1007/s00125-008-1087-8&rft_dat=%3Cproquest_cross%3E1549289571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213843183&rft_id=info:pmid/18663428&rfr_iscdi=true