Third-order theory for bichromatic bi-directional water waves
A new third-order solution for bichromatic bi-directional water waves in finite depth is presented. Earlier derivations of steady bichromatic wave theories have been restricted to second-order in finite depth and third-order in infinite depth, while third-order theories in finite depth have been lim...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2006-06, Vol.557, p.369-397 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 397 |
---|---|
container_issue | |
container_start_page | 369 |
container_title | Journal of fluid mechanics |
container_volume | 557 |
creator | MADSEN, PER A. FUHRMAN, DAVID R. |
description | A new third-order solution for bichromatic bi-directional water waves in finite depth is presented. Earlier derivations of steady bichromatic wave theories have been restricted to second-order in finite depth and third-order in infinite depth, while third-order theories in finite depth have been limited to the case of monochromatic short-crested waves. This work generalizes these earlier works. The solution includes explicit expressions for the surface elevation, the amplitude dispersion and the vertical variation of the velocity potential, and it incorporates the effect of an ambient current with the option of specifying zero net volume flux. The nonlinear dispersion relation is generalized to account for many interacting wave components with different frequencies and amplitudes, and it is verified against classical expressions from the literature. Limitations and problems with these classical expressions are identified. Next, third-order resonance curves for finite-amplitude carrier waves and their three-dimensional perturbations are calculated. The influence of nonlinearity on these curves is demonstrated and a comparison is made with the location of dominant class I and class II wave instabilities determined by classical stability analyses. Finally, third-order resonance curves for the interaction of nonlinear waves and an undular sea bottom are calculated. On the basis of these curves, the previously observed downshift/upshift of reflected/transmitted class III Bragg scatter is, for the first time, explained. |
doi_str_mv | 10.1017/S0022112006009815 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19557053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112006009815</cupid><sourcerecordid>1399473251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-6f146658d3c1a435c9913b138fdc1e9190a3fcff48c2e15e81cc0d36626b0c723</originalsourceid><addsrcrecordid>eNp1kMFuEzEQhi1EJULKA3BbIcFtYcZee-0DBxIgrVQVIcKFi-X12sRlEwd7Q8jbd1eJGgnU04z0fzP69BPyEuEtAtbvvgFQikgBBICSyJ-QCVZClbWo-FMyGeNyzJ-R5znfASADVU_I--UqpLaMqXWp6FcupkPhYyqaYFcprk0f7LCXbUjO9iFuTFfsTT-we_PH5Uty4U2X3YvTnJLvnz8t51flzZfF9fzDTWk5VX0p_KAiuGyZRVMxbpVC1iCTvrXoFCowzFvvK2mpQ-4kWgstE4KKBmxN2ZS8Of7dpvh753Kv1yFb13Vm4-Iua1Sc18DZAL76B7yLuzRYZ00RpALJRgiPkE0x5-S83qawNumgEfTYpv6vzeHm9emxydZ0PpmNDfl8WEsuZTVy5ZELuXd_H3KTfmlRs5prsfiq6ex29hEWPzQMPDu5mHWTQvvTnY0ft7kHGyOQoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210890833</pqid></control><display><type>article</type><title>Third-order theory for bichromatic bi-directional water waves</title><source>Cambridge University Press Journals Complete</source><creator>MADSEN, PER A. ; FUHRMAN, DAVID R.</creator><creatorcontrib>MADSEN, PER A. ; FUHRMAN, DAVID R.</creatorcontrib><description>A new third-order solution for bichromatic bi-directional water waves in finite depth is presented. Earlier derivations of steady bichromatic wave theories have been restricted to second-order in finite depth and third-order in infinite depth, while third-order theories in finite depth have been limited to the case of monochromatic short-crested waves. This work generalizes these earlier works. The solution includes explicit expressions for the surface elevation, the amplitude dispersion and the vertical variation of the velocity potential, and it incorporates the effect of an ambient current with the option of specifying zero net volume flux. The nonlinear dispersion relation is generalized to account for many interacting wave components with different frequencies and amplitudes, and it is verified against classical expressions from the literature. Limitations and problems with these classical expressions are identified. Next, third-order resonance curves for finite-amplitude carrier waves and their three-dimensional perturbations are calculated. The influence of nonlinearity on these curves is demonstrated and a comparison is made with the location of dominant class I and class II wave instabilities determined by classical stability analyses. Finally, third-order resonance curves for the interaction of nonlinear waves and an undular sea bottom are calculated. On the basis of these curves, the previously observed downshift/upshift of reflected/transmitted class III Bragg scatter is, for the first time, explained.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112006009815</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Physics of the oceans ; Resonance ; Stability analysis ; Surface waves, tides and sea level. Seiches ; Velocity potential ; Water depth ; Water waves</subject><ispartof>Journal of fluid mechanics, 2006-06, Vol.557, p.369-397</ispartof><rights>2006 Cambridge University Press</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-6f146658d3c1a435c9913b138fdc1e9190a3fcff48c2e15e81cc0d36626b0c723</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112006009815/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,315,782,786,27931,27932,55635</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17858845$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>MADSEN, PER A.</creatorcontrib><creatorcontrib>FUHRMAN, DAVID R.</creatorcontrib><title>Third-order theory for bichromatic bi-directional water waves</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>A new third-order solution for bichromatic bi-directional water waves in finite depth is presented. Earlier derivations of steady bichromatic wave theories have been restricted to second-order in finite depth and third-order in infinite depth, while third-order theories in finite depth have been limited to the case of monochromatic short-crested waves. This work generalizes these earlier works. The solution includes explicit expressions for the surface elevation, the amplitude dispersion and the vertical variation of the velocity potential, and it incorporates the effect of an ambient current with the option of specifying zero net volume flux. The nonlinear dispersion relation is generalized to account for many interacting wave components with different frequencies and amplitudes, and it is verified against classical expressions from the literature. Limitations and problems with these classical expressions are identified. Next, third-order resonance curves for finite-amplitude carrier waves and their three-dimensional perturbations are calculated. The influence of nonlinearity on these curves is demonstrated and a comparison is made with the location of dominant class I and class II wave instabilities determined by classical stability analyses. Finally, third-order resonance curves for the interaction of nonlinear waves and an undular sea bottom are calculated. On the basis of these curves, the previously observed downshift/upshift of reflected/transmitted class III Bragg scatter is, for the first time, explained.</description><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Physics of the oceans</subject><subject>Resonance</subject><subject>Stability analysis</subject><subject>Surface waves, tides and sea level. Seiches</subject><subject>Velocity potential</subject><subject>Water depth</subject><subject>Water waves</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMFuEzEQhi1EJULKA3BbIcFtYcZee-0DBxIgrVQVIcKFi-X12sRlEwd7Q8jbd1eJGgnU04z0fzP69BPyEuEtAtbvvgFQikgBBICSyJ-QCVZClbWo-FMyGeNyzJ-R5znfASADVU_I--UqpLaMqXWp6FcupkPhYyqaYFcprk0f7LCXbUjO9iFuTFfsTT-we_PH5Uty4U2X3YvTnJLvnz8t51flzZfF9fzDTWk5VX0p_KAiuGyZRVMxbpVC1iCTvrXoFCowzFvvK2mpQ-4kWgstE4KKBmxN2ZS8Of7dpvh753Kv1yFb13Vm4-Iua1Sc18DZAL76B7yLuzRYZ00RpALJRgiPkE0x5-S83qawNumgEfTYpv6vzeHm9emxydZ0PpmNDfl8WEsuZTVy5ZELuXd_H3KTfmlRs5prsfiq6ex29hEWPzQMPDu5mHWTQvvTnY0ft7kHGyOQoQ</recordid><startdate>20060625</startdate><enddate>20060625</enddate><creator>MADSEN, PER A.</creator><creator>FUHRMAN, DAVID R.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20060625</creationdate><title>Third-order theory for bichromatic bi-directional water waves</title><author>MADSEN, PER A. ; FUHRMAN, DAVID R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-6f146658d3c1a435c9913b138fdc1e9190a3fcff48c2e15e81cc0d36626b0c723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Physics of the oceans</topic><topic>Resonance</topic><topic>Stability analysis</topic><topic>Surface waves, tides and sea level. Seiches</topic><topic>Velocity potential</topic><topic>Water depth</topic><topic>Water waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MADSEN, PER A.</creatorcontrib><creatorcontrib>FUHRMAN, DAVID R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MADSEN, PER A.</au><au>FUHRMAN, DAVID R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Third-order theory for bichromatic bi-directional water waves</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2006-06-25</date><risdate>2006</risdate><volume>557</volume><spage>369</spage><epage>397</epage><pages>369-397</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>A new third-order solution for bichromatic bi-directional water waves in finite depth is presented. Earlier derivations of steady bichromatic wave theories have been restricted to second-order in finite depth and third-order in infinite depth, while third-order theories in finite depth have been limited to the case of monochromatic short-crested waves. This work generalizes these earlier works. The solution includes explicit expressions for the surface elevation, the amplitude dispersion and the vertical variation of the velocity potential, and it incorporates the effect of an ambient current with the option of specifying zero net volume flux. The nonlinear dispersion relation is generalized to account for many interacting wave components with different frequencies and amplitudes, and it is verified against classical expressions from the literature. Limitations and problems with these classical expressions are identified. Next, third-order resonance curves for finite-amplitude carrier waves and their three-dimensional perturbations are calculated. The influence of nonlinearity on these curves is demonstrated and a comparison is made with the location of dominant class I and class II wave instabilities determined by classical stability analyses. Finally, third-order resonance curves for the interaction of nonlinear waves and an undular sea bottom are calculated. On the basis of these curves, the previously observed downshift/upshift of reflected/transmitted class III Bragg scatter is, for the first time, explained.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112006009815</doi><tpages>29</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2006-06, Vol.557, p.369-397 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_19557053 |
source | Cambridge University Press Journals Complete |
subjects | Earth, ocean, space Exact sciences and technology External geophysics Physics of the oceans Resonance Stability analysis Surface waves, tides and sea level. Seiches Velocity potential Water depth Water waves |
title | Third-order theory for bichromatic bi-directional water waves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T02%3A35%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Third-order%20theory%20for%20bichromatic%20bi-directional%20water%20waves&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=MADSEN,%20PER%20A.&rft.date=2006-06-25&rft.volume=557&rft.spage=369&rft.epage=397&rft.pages=369-397&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112006009815&rft_dat=%3Cproquest_cross%3E1399473251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=210890833&rft_id=info:pmid/&rft_cupid=10_1017_S0022112006009815&rfr_iscdi=true |