Degradable and biocompatible hydrogels bearing a hindered urea bond
A hindered urea bond (HUB), recently reported as a new type of dynamic chemical bond, can be facilely constructed by mixing an isocyanate and a hindered amine. Here, we report the use of the HUB in the design of degradable hydrogel materials for applications of stem cell encapsulation and delivery....
Gespeichert in:
Veröffentlicht in: | Biomaterials science 2017-12, Vol.5 (12), p.2398-2402 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A hindered urea bond (HUB), recently reported as a new type of dynamic chemical bond, can be facilely constructed by mixing an isocyanate and a hindered amine. Here, we report the use of the HUB in the design of degradable hydrogel materials for applications of stem cell encapsulation and delivery. Polyethyleneglycol (PEG) diamine was end-capped with a HUB and an allyl group in a one-pot synthesis. The resulting polymer was cross-linked to form a hydrogel under UV with the addition of a 4-arm PEG thiol and a photoinitiator. The degradation properties of the hydrogels were confirmed with NMR, GPC, weight loss, and protein release studies. We found that the degradation kinetics is dependent on the size of the N-substituents, and the one with the tert-butyl group shows complete degradation within 2 days. The new hydrogel materials were also demonstrated to be biocompatible with hMSCs, and the cell release kinetics can be facilely tuned over 5 days. |
---|---|
ISSN: | 2047-4830 2047-4849 |
DOI: | 10.1039/c7bm00669a |