Estimation of the percentage of transgenic Bt maize in maize flour mixtures using perfusion and monolithic reversed-phase high-performance liquid chromatography and chemometric tools

The estimation of the percentage of transgenic Bt maize in maize flour mixtures has been achieved in this work by high-performance liquid chromatography using perfusion and monolithic columns and chemometric analysis. Principal component analysis allowed a preliminary study of the data structure. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food chemistry 2008-11, Vol.111 (2), p.483-489
Hauptverfasser: Rodríguez-Nogales, J.M., Cifuentes, A., García, M.C., Marina, M.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 489
container_issue 2
container_start_page 483
container_title Food chemistry
container_volume 111
creator Rodríguez-Nogales, J.M.
Cifuentes, A.
García, M.C.
Marina, M.L.
description The estimation of the percentage of transgenic Bt maize in maize flour mixtures has been achieved in this work by high-performance liquid chromatography using perfusion and monolithic columns and chemometric analysis. Principal component analysis allowed a preliminary study of the data structure. Then, linear discriminant analysis was used to develop decision rules to classify samples in the established categories (percentages of transgenic Bt maize). Finally, linear regression (LR) and multivariate regression models (namely, principal component analysis regression (PCR), partial least squares regression (PLS-1), and multiple linear regression (MLR)) were assayed for the prediction of the percentages of transgenic Bt maize present in a maize flour mixture. Using the relative areas of the protein peaks, MLR provided the best models and was able to predict the percentage of transgenic Bt maize in flour mixtures with an error of ±5.3%, ±2.3%, and ±3.8% in the predictions of Aristis Bt, DKC6575, and PR33P67, respectively.
doi_str_mv 10.1016/j.foodchem.2008.03.079
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19552907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0308814608004123</els_id><sourcerecordid>19552907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-1af8d3ab7b3fd810ba865f224b593c43406d65356828ae4e0618de0beddedaa63</originalsourceid><addsrcrecordid>eNqFks9u1DAQxiMEokvhFYovIC5ZxnHiODegKn-kShygZ8uxJ4lXSby1nYryYDwfzu4WbnDyyPp938z4c5ZdUNhSoPztbts5Z_SA07YAEFtgW6ibR9mGiprlNdTF42wDDEQuaMnPsmch7ACgACqeZmcFh7Iuq3KT_boK0U4qWjcT15E4INmj1zhH1ePhxqs59DhbTT5EMin7E4mdT0U3usWTyf6Ii8dAlmDnftV3qUqGajZkcrMbbRyS3uMd-oAm3w8qIBlsP-Qr7PykZo1ktLeLNUQP3qWJXO_Vfrg_mKx7ugmjTy7RuTE8z550agz44nSeZzcfr75ffs6vv376cvn-OtdlxWJOVScMU23dss4ICq0SvOqKomyrhumSlcANr1jFRSEUlgicCoPQojFolOLsPHt99N17d7tgiHKyQeM4qhndEiRtqqpooE7gm3-DXPCmEal9QvkR1d6F4LGTe58i8PeSglzDlTv5EK5cw5XAZAo3CS9OPZZ2QvNH9pBmAl6dABW0GrsUnbbhLwcVlNVh2JdHrlNOqt4n5uZb-hoMoIGmLNa93x0JTI97Z9HLoC2mkIz1qKM0zv5v2t_IydT0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1686998865</pqid></control><display><type>article</type><title>Estimation of the percentage of transgenic Bt maize in maize flour mixtures using perfusion and monolithic reversed-phase high-performance liquid chromatography and chemometric tools</title><source>Elsevier ScienceDirect Journals</source><creator>Rodríguez-Nogales, J.M. ; Cifuentes, A. ; García, M.C. ; Marina, M.L.</creator><creatorcontrib>Rodríguez-Nogales, J.M. ; Cifuentes, A. ; García, M.C. ; Marina, M.L.</creatorcontrib><description>The estimation of the percentage of transgenic Bt maize in maize flour mixtures has been achieved in this work by high-performance liquid chromatography using perfusion and monolithic columns and chemometric analysis. Principal component analysis allowed a preliminary study of the data structure. Then, linear discriminant analysis was used to develop decision rules to classify samples in the established categories (percentages of transgenic Bt maize). Finally, linear regression (LR) and multivariate regression models (namely, principal component analysis regression (PCR), partial least squares regression (PLS-1), and multiple linear regression (MLR)) were assayed for the prediction of the percentages of transgenic Bt maize present in a maize flour mixture. Using the relative areas of the protein peaks, MLR provided the best models and was able to predict the percentage of transgenic Bt maize in flour mixtures with an error of ±5.3%, ±2.3%, and ±3.8% in the predictions of Aristis Bt, DKC6575, and PR33P67, respectively.</description><identifier>ISSN: 0308-8146</identifier><identifier>EISSN: 1873-7072</identifier><identifier>DOI: 10.1016/j.foodchem.2008.03.079</identifier><identifier>PMID: 26047454</identifier><identifier>CODEN: FOCHDJ</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Bacillus thuringiensis ; Biological and medical sciences ; blended foods ; Cereal and baking product industries ; Chemometric analysis ; chemometric tools ; corn ; corn flour ; cultivars ; estimation ; food analysis ; food composition ; Food industries ; Fundamental and applied biological sciences. Psychology ; genetically modified foods ; Maize proteins ; monolithic reversed-phase high-performance liquid chromatography ; Monolithic RP-HPLC ; perfusion ; Perfusion RP-HPLC ; reversed-phase high performance liquid chromatography ; Transgenic Bt maize ; transgenic plants ; Zea mays</subject><ispartof>Food chemistry, 2008-11, Vol.111 (2), p.483-489</ispartof><rights>2008 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><rights>Copyright © 2008 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-1af8d3ab7b3fd810ba865f224b593c43406d65356828ae4e0618de0beddedaa63</citedby><cites>FETCH-LOGICAL-c453t-1af8d3ab7b3fd810ba865f224b593c43406d65356828ae4e0618de0beddedaa63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0308814608004123$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20504507$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26047454$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodríguez-Nogales, J.M.</creatorcontrib><creatorcontrib>Cifuentes, A.</creatorcontrib><creatorcontrib>García, M.C.</creatorcontrib><creatorcontrib>Marina, M.L.</creatorcontrib><title>Estimation of the percentage of transgenic Bt maize in maize flour mixtures using perfusion and monolithic reversed-phase high-performance liquid chromatography and chemometric tools</title><title>Food chemistry</title><addtitle>Food Chem</addtitle><description>The estimation of the percentage of transgenic Bt maize in maize flour mixtures has been achieved in this work by high-performance liquid chromatography using perfusion and monolithic columns and chemometric analysis. Principal component analysis allowed a preliminary study of the data structure. Then, linear discriminant analysis was used to develop decision rules to classify samples in the established categories (percentages of transgenic Bt maize). Finally, linear regression (LR) and multivariate regression models (namely, principal component analysis regression (PCR), partial least squares regression (PLS-1), and multiple linear regression (MLR)) were assayed for the prediction of the percentages of transgenic Bt maize present in a maize flour mixture. Using the relative areas of the protein peaks, MLR provided the best models and was able to predict the percentage of transgenic Bt maize in flour mixtures with an error of ±5.3%, ±2.3%, and ±3.8% in the predictions of Aristis Bt, DKC6575, and PR33P67, respectively.</description><subject>Bacillus thuringiensis</subject><subject>Biological and medical sciences</subject><subject>blended foods</subject><subject>Cereal and baking product industries</subject><subject>Chemometric analysis</subject><subject>chemometric tools</subject><subject>corn</subject><subject>corn flour</subject><subject>cultivars</subject><subject>estimation</subject><subject>food analysis</subject><subject>food composition</subject><subject>Food industries</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>genetically modified foods</subject><subject>Maize proteins</subject><subject>monolithic reversed-phase high-performance liquid chromatography</subject><subject>Monolithic RP-HPLC</subject><subject>perfusion</subject><subject>Perfusion RP-HPLC</subject><subject>reversed-phase high performance liquid chromatography</subject><subject>Transgenic Bt maize</subject><subject>transgenic plants</subject><subject>Zea mays</subject><issn>0308-8146</issn><issn>1873-7072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFks9u1DAQxiMEokvhFYovIC5ZxnHiODegKn-kShygZ8uxJ4lXSby1nYryYDwfzu4WbnDyyPp938z4c5ZdUNhSoPztbts5Z_SA07YAEFtgW6ibR9mGiprlNdTF42wDDEQuaMnPsmch7ACgACqeZmcFh7Iuq3KT_boK0U4qWjcT15E4INmj1zhH1ePhxqs59DhbTT5EMin7E4mdT0U3usWTyf6Ii8dAlmDnftV3qUqGajZkcrMbbRyS3uMd-oAm3w8qIBlsP-Qr7PykZo1ktLeLNUQP3qWJXO_Vfrg_mKx7ugmjTy7RuTE8z550agz44nSeZzcfr75ffs6vv376cvn-OtdlxWJOVScMU23dss4ICq0SvOqKomyrhumSlcANr1jFRSEUlgicCoPQojFolOLsPHt99N17d7tgiHKyQeM4qhndEiRtqqpooE7gm3-DXPCmEal9QvkR1d6F4LGTe58i8PeSglzDlTv5EK5cw5XAZAo3CS9OPZZ2QvNH9pBmAl6dABW0GrsUnbbhLwcVlNVh2JdHrlNOqt4n5uZb-hoMoIGmLNa93x0JTI97Z9HLoC2mkIz1qKM0zv5v2t_IydT0</recordid><startdate>20081115</startdate><enddate>20081115</enddate><creator>Rodríguez-Nogales, J.M.</creator><creator>Cifuentes, A.</creator><creator>García, M.C.</creator><creator>Marina, M.L.</creator><general>Elsevier Ltd</general><general>[Amsterdam]: Elsevier Science</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20081115</creationdate><title>Estimation of the percentage of transgenic Bt maize in maize flour mixtures using perfusion and monolithic reversed-phase high-performance liquid chromatography and chemometric tools</title><author>Rodríguez-Nogales, J.M. ; Cifuentes, A. ; García, M.C. ; Marina, M.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-1af8d3ab7b3fd810ba865f224b593c43406d65356828ae4e0618de0beddedaa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bacillus thuringiensis</topic><topic>Biological and medical sciences</topic><topic>blended foods</topic><topic>Cereal and baking product industries</topic><topic>Chemometric analysis</topic><topic>chemometric tools</topic><topic>corn</topic><topic>corn flour</topic><topic>cultivars</topic><topic>estimation</topic><topic>food analysis</topic><topic>food composition</topic><topic>Food industries</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>genetically modified foods</topic><topic>Maize proteins</topic><topic>monolithic reversed-phase high-performance liquid chromatography</topic><topic>Monolithic RP-HPLC</topic><topic>perfusion</topic><topic>Perfusion RP-HPLC</topic><topic>reversed-phase high performance liquid chromatography</topic><topic>Transgenic Bt maize</topic><topic>transgenic plants</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-Nogales, J.M.</creatorcontrib><creatorcontrib>Cifuentes, A.</creatorcontrib><creatorcontrib>García, M.C.</creatorcontrib><creatorcontrib>Marina, M.L.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-Nogales, J.M.</au><au>Cifuentes, A.</au><au>García, M.C.</au><au>Marina, M.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of the percentage of transgenic Bt maize in maize flour mixtures using perfusion and monolithic reversed-phase high-performance liquid chromatography and chemometric tools</atitle><jtitle>Food chemistry</jtitle><addtitle>Food Chem</addtitle><date>2008-11-15</date><risdate>2008</risdate><volume>111</volume><issue>2</issue><spage>483</spage><epage>489</epage><pages>483-489</pages><issn>0308-8146</issn><eissn>1873-7072</eissn><coden>FOCHDJ</coden><abstract>The estimation of the percentage of transgenic Bt maize in maize flour mixtures has been achieved in this work by high-performance liquid chromatography using perfusion and monolithic columns and chemometric analysis. Principal component analysis allowed a preliminary study of the data structure. Then, linear discriminant analysis was used to develop decision rules to classify samples in the established categories (percentages of transgenic Bt maize). Finally, linear regression (LR) and multivariate regression models (namely, principal component analysis regression (PCR), partial least squares regression (PLS-1), and multiple linear regression (MLR)) were assayed for the prediction of the percentages of transgenic Bt maize present in a maize flour mixture. Using the relative areas of the protein peaks, MLR provided the best models and was able to predict the percentage of transgenic Bt maize in flour mixtures with an error of ±5.3%, ±2.3%, and ±3.8% in the predictions of Aristis Bt, DKC6575, and PR33P67, respectively.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>26047454</pmid><doi>10.1016/j.foodchem.2008.03.079</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0308-8146
ispartof Food chemistry, 2008-11, Vol.111 (2), p.483-489
issn 0308-8146
1873-7072
language eng
recordid cdi_proquest_miscellaneous_19552907
source Elsevier ScienceDirect Journals
subjects Bacillus thuringiensis
Biological and medical sciences
blended foods
Cereal and baking product industries
Chemometric analysis
chemometric tools
corn
corn flour
cultivars
estimation
food analysis
food composition
Food industries
Fundamental and applied biological sciences. Psychology
genetically modified foods
Maize proteins
monolithic reversed-phase high-performance liquid chromatography
Monolithic RP-HPLC
perfusion
Perfusion RP-HPLC
reversed-phase high performance liquid chromatography
Transgenic Bt maize
transgenic plants
Zea mays
title Estimation of the percentage of transgenic Bt maize in maize flour mixtures using perfusion and monolithic reversed-phase high-performance liquid chromatography and chemometric tools
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T08%3A45%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20the%20percentage%20of%20transgenic%20Bt%20maize%20in%20maize%20flour%20mixtures%20using%20perfusion%20and%20monolithic%20reversed-phase%20high-performance%20liquid%20chromatography%20and%20chemometric%20tools&rft.jtitle=Food%20chemistry&rft.au=Rodr%C3%ADguez-Nogales,%20J.M.&rft.date=2008-11-15&rft.volume=111&rft.issue=2&rft.spage=483&rft.epage=489&rft.pages=483-489&rft.issn=0308-8146&rft.eissn=1873-7072&rft.coden=FOCHDJ&rft_id=info:doi/10.1016/j.foodchem.2008.03.079&rft_dat=%3Cproquest_cross%3E19552907%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1686998865&rft_id=info:pmid/26047454&rft_els_id=S0308814608004123&rfr_iscdi=true