Control of pore characteristics in carbon molecular sieve membranes (CMSM) using organic/inorganic hybrid materials
Microporous carbon membranes have shown extraordinary gas transport performance with thermal and chemical stability. The permeation characteristics of carbon membranes can be simply controlled by pyrolysis conditions. However, the results from a regulation of the factors give trade-off relationship....
Gespeichert in:
Veröffentlicht in: | Desalination 2008-12, Vol.233 (1), p.88-95 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 95 |
---|---|
container_issue | 1 |
container_start_page | 88 |
container_title | Desalination |
container_volume | 233 |
creator | Han, Sang Hoon Kim, Gun Wook Jung, Chul Ho Lee, Young Moo |
description | Microporous carbon membranes have shown extraordinary gas transport performance with thermal and chemical stability. The permeation characteristics of carbon membranes can be simply controlled by pyrolysis conditions. However, the results from a regulation of the factors give trade-off relationship. To overcome the trade-off relationship, carbon–silica membranes derived from poly(imide siloxane) composed of continuous polyimide matrix and porous siloxane domains were reported. To obtain higher permeability without a severe loss in selectivity, mesoporous alumina particles were introduced to the carbon–silica membrane. Poly(imide siloxane)–alumina composites were prepared as precursors and pyrolyzed at 600°C. The morphologies were observed using FE-SEM with energy dispersive spectroscopy. Pore characteristics were investigated by nitrogen adsorption/desorption experiments. The alumina-loaded carbon membrane showed a high volume of adsorbed nitrogen, indicating high surface area and pore volume. Gas permeation properties were measured at room temperature by the time-lag method for small gas molecules. The carbon–silica–alumina membranes pyrolyzed at 600°C had CO
2 permeability of 1765 Barrer (10
−10 cm
3 (STP) cm cm
−2 s cm Hg) and a CO
2/N
2 selectivity of 28, while the carbon–silica membranes had CO
2 permeability of 610 Barrer and CO
2/N
2 selectivity of 34. |
doi_str_mv | 10.1016/j.desal.2007.09.030 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19551514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001191640800461X</els_id><sourcerecordid>14020429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-f296276c29de6d8ac422c3287d1360c449d2c3a43def5d885033a704d1b17eaf3</originalsourceid><addsrcrecordid>eNqNkT1vFDEQhi1EJI7AL6BxAyLFbsYf--GCAp0SQEpEAdSWz55NfNpdH569SPn38XEnSkg1M9Iz71h-GHsnoBYg2sttHZDcWEuArgZTg4IXbCX6TlVat_olWwEIURnR6lfsNdG2jNIotWK0TvOS08jTwHcpI_f3Lju_YI60RE88zty7vEkzn9KIfj-6zCniA_IJp012MxL_uL79cXvB9xTnO57ynZujv4zzqeP3j5scA5_cIdWN9IadDaXg21M9Z7-ur36uv1Y33798W3--qbxuuqUapGll13ppArahd15L6ZXsuyBUC15rE8rstAo4NKHvG1DKdaCD2IgO3aDO2Ydj7i6n33ukxU6RPI5jeXTakxWmaUQj9LNAaGT_f1D3vZSNeQYIErQ8gOoI-pyIMg52l-Pk8qMVYA9u7db-cWsPbi0YW9yWrfeneEfejUPR4CP9XZVgoAEtCvfpyGH55oeI2ZKPOHsMMaNfbEjxn3eeADnou1U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14020429</pqid></control><display><type>article</type><title>Control of pore characteristics in carbon molecular sieve membranes (CMSM) using organic/inorganic hybrid materials</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Han, Sang Hoon ; Kim, Gun Wook ; Jung, Chul Ho ; Lee, Young Moo</creator><creatorcontrib>Han, Sang Hoon ; Kim, Gun Wook ; Jung, Chul Ho ; Lee, Young Moo</creatorcontrib><description>Microporous carbon membranes have shown extraordinary gas transport performance with thermal and chemical stability. The permeation characteristics of carbon membranes can be simply controlled by pyrolysis conditions. However, the results from a regulation of the factors give trade-off relationship. To overcome the trade-off relationship, carbon–silica membranes derived from poly(imide siloxane) composed of continuous polyimide matrix and porous siloxane domains were reported. To obtain higher permeability without a severe loss in selectivity, mesoporous alumina particles were introduced to the carbon–silica membrane. Poly(imide siloxane)–alumina composites were prepared as precursors and pyrolyzed at 600°C. The morphologies were observed using FE-SEM with energy dispersive spectroscopy. Pore characteristics were investigated by nitrogen adsorption/desorption experiments. The alumina-loaded carbon membrane showed a high volume of adsorbed nitrogen, indicating high surface area and pore volume. Gas permeation properties were measured at room temperature by the time-lag method for small gas molecules. The carbon–silica–alumina membranes pyrolyzed at 600°C had CO
2 permeability of 1765 Barrer (10
−10 cm
3 (STP) cm cm
−2 s cm Hg) and a CO
2/N
2 selectivity of 28, while the carbon–silica membranes had CO
2 permeability of 610 Barrer and CO
2/N
2 selectivity of 34.</description><identifier>ISSN: 0011-9164</identifier><identifier>EISSN: 1873-4464</identifier><identifier>DOI: 10.1016/j.desal.2007.09.030</identifier><identifier>CODEN: DSLNAH</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adsorption ; Applied sciences ; Carbon membrane ; Carbon–silica–alumina ; Chemical engineering ; Composite membrane ; Exact sciences and technology ; Gas separation ; Membrane separation (reverse osmosis, dialysis...) ; Pollution</subject><ispartof>Desalination, 2008-12, Vol.233 (1), p.88-95</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-f296276c29de6d8ac422c3287d1360c449d2c3a43def5d885033a704d1b17eaf3</citedby><cites>FETCH-LOGICAL-c457t-f296276c29de6d8ac422c3287d1360c449d2c3a43def5d885033a704d1b17eaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.desal.2007.09.030$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20905041$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Sang Hoon</creatorcontrib><creatorcontrib>Kim, Gun Wook</creatorcontrib><creatorcontrib>Jung, Chul Ho</creatorcontrib><creatorcontrib>Lee, Young Moo</creatorcontrib><title>Control of pore characteristics in carbon molecular sieve membranes (CMSM) using organic/inorganic hybrid materials</title><title>Desalination</title><description>Microporous carbon membranes have shown extraordinary gas transport performance with thermal and chemical stability. The permeation characteristics of carbon membranes can be simply controlled by pyrolysis conditions. However, the results from a regulation of the factors give trade-off relationship. To overcome the trade-off relationship, carbon–silica membranes derived from poly(imide siloxane) composed of continuous polyimide matrix and porous siloxane domains were reported. To obtain higher permeability without a severe loss in selectivity, mesoporous alumina particles were introduced to the carbon–silica membrane. Poly(imide siloxane)–alumina composites were prepared as precursors and pyrolyzed at 600°C. The morphologies were observed using FE-SEM with energy dispersive spectroscopy. Pore characteristics were investigated by nitrogen adsorption/desorption experiments. The alumina-loaded carbon membrane showed a high volume of adsorbed nitrogen, indicating high surface area and pore volume. Gas permeation properties were measured at room temperature by the time-lag method for small gas molecules. The carbon–silica–alumina membranes pyrolyzed at 600°C had CO
2 permeability of 1765 Barrer (10
−10 cm
3 (STP) cm cm
−2 s cm Hg) and a CO
2/N
2 selectivity of 28, while the carbon–silica membranes had CO
2 permeability of 610 Barrer and CO
2/N
2 selectivity of 34.</description><subject>Adsorption</subject><subject>Applied sciences</subject><subject>Carbon membrane</subject><subject>Carbon–silica–alumina</subject><subject>Chemical engineering</subject><subject>Composite membrane</subject><subject>Exact sciences and technology</subject><subject>Gas separation</subject><subject>Membrane separation (reverse osmosis, dialysis...)</subject><subject>Pollution</subject><issn>0011-9164</issn><issn>1873-4464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkT1vFDEQhi1EJI7AL6BxAyLFbsYf--GCAp0SQEpEAdSWz55NfNpdH569SPn38XEnSkg1M9Iz71h-GHsnoBYg2sttHZDcWEuArgZTg4IXbCX6TlVat_olWwEIURnR6lfsNdG2jNIotWK0TvOS08jTwHcpI_f3Lju_YI60RE88zty7vEkzn9KIfj-6zCniA_IJp012MxL_uL79cXvB9xTnO57ynZujv4zzqeP3j5scA5_cIdWN9IadDaXg21M9Z7-ur36uv1Y33798W3--qbxuuqUapGll13ppArahd15L6ZXsuyBUC15rE8rstAo4NKHvG1DKdaCD2IgO3aDO2Ydj7i6n33ukxU6RPI5jeXTakxWmaUQj9LNAaGT_f1D3vZSNeQYIErQ8gOoI-pyIMg52l-Pk8qMVYA9u7db-cWsPbi0YW9yWrfeneEfejUPR4CP9XZVgoAEtCvfpyGH55oeI2ZKPOHsMMaNfbEjxn3eeADnou1U</recordid><startdate>20081215</startdate><enddate>20081215</enddate><creator>Han, Sang Hoon</creator><creator>Kim, Gun Wook</creator><creator>Jung, Chul Ho</creator><creator>Lee, Young Moo</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7UA</scope></search><sort><creationdate>20081215</creationdate><title>Control of pore characteristics in carbon molecular sieve membranes (CMSM) using organic/inorganic hybrid materials</title><author>Han, Sang Hoon ; Kim, Gun Wook ; Jung, Chul Ho ; Lee, Young Moo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-f296276c29de6d8ac422c3287d1360c449d2c3a43def5d885033a704d1b17eaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adsorption</topic><topic>Applied sciences</topic><topic>Carbon membrane</topic><topic>Carbon–silica–alumina</topic><topic>Chemical engineering</topic><topic>Composite membrane</topic><topic>Exact sciences and technology</topic><topic>Gas separation</topic><topic>Membrane separation (reverse osmosis, dialysis...)</topic><topic>Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Sang Hoon</creatorcontrib><creatorcontrib>Kim, Gun Wook</creatorcontrib><creatorcontrib>Jung, Chul Ho</creatorcontrib><creatorcontrib>Lee, Young Moo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><jtitle>Desalination</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Sang Hoon</au><au>Kim, Gun Wook</au><au>Jung, Chul Ho</au><au>Lee, Young Moo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of pore characteristics in carbon molecular sieve membranes (CMSM) using organic/inorganic hybrid materials</atitle><jtitle>Desalination</jtitle><date>2008-12-15</date><risdate>2008</risdate><volume>233</volume><issue>1</issue><spage>88</spage><epage>95</epage><pages>88-95</pages><issn>0011-9164</issn><eissn>1873-4464</eissn><coden>DSLNAH</coden><abstract>Microporous carbon membranes have shown extraordinary gas transport performance with thermal and chemical stability. The permeation characteristics of carbon membranes can be simply controlled by pyrolysis conditions. However, the results from a regulation of the factors give trade-off relationship. To overcome the trade-off relationship, carbon–silica membranes derived from poly(imide siloxane) composed of continuous polyimide matrix and porous siloxane domains were reported. To obtain higher permeability without a severe loss in selectivity, mesoporous alumina particles were introduced to the carbon–silica membrane. Poly(imide siloxane)–alumina composites were prepared as precursors and pyrolyzed at 600°C. The morphologies were observed using FE-SEM with energy dispersive spectroscopy. Pore characteristics were investigated by nitrogen adsorption/desorption experiments. The alumina-loaded carbon membrane showed a high volume of adsorbed nitrogen, indicating high surface area and pore volume. Gas permeation properties were measured at room temperature by the time-lag method for small gas molecules. The carbon–silica–alumina membranes pyrolyzed at 600°C had CO
2 permeability of 1765 Barrer (10
−10 cm
3 (STP) cm cm
−2 s cm Hg) and a CO
2/N
2 selectivity of 28, while the carbon–silica membranes had CO
2 permeability of 610 Barrer and CO
2/N
2 selectivity of 34.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.desal.2007.09.030</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0011-9164 |
ispartof | Desalination, 2008-12, Vol.233 (1), p.88-95 |
issn | 0011-9164 1873-4464 |
language | eng |
recordid | cdi_proquest_miscellaneous_19551514 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Adsorption Applied sciences Carbon membrane Carbon–silica–alumina Chemical engineering Composite membrane Exact sciences and technology Gas separation Membrane separation (reverse osmosis, dialysis...) Pollution |
title | Control of pore characteristics in carbon molecular sieve membranes (CMSM) using organic/inorganic hybrid materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A44%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20pore%20characteristics%20in%20carbon%20molecular%20sieve%20membranes%20(CMSM)%20using%20organic/inorganic%20hybrid%20materials&rft.jtitle=Desalination&rft.au=Han,%20Sang%20Hoon&rft.date=2008-12-15&rft.volume=233&rft.issue=1&rft.spage=88&rft.epage=95&rft.pages=88-95&rft.issn=0011-9164&rft.eissn=1873-4464&rft.coden=DSLNAH&rft_id=info:doi/10.1016/j.desal.2007.09.030&rft_dat=%3Cproquest_cross%3E14020429%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14020429&rft_id=info:pmid/&rft_els_id=S001191640800461X&rfr_iscdi=true |