Control of pore characteristics in carbon molecular sieve membranes (CMSM) using organic/inorganic hybrid materials

Microporous carbon membranes have shown extraordinary gas transport performance with thermal and chemical stability. The permeation characteristics of carbon membranes can be simply controlled by pyrolysis conditions. However, the results from a regulation of the factors give trade-off relationship....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Desalination 2008-12, Vol.233 (1), p.88-95
Hauptverfasser: Han, Sang Hoon, Kim, Gun Wook, Jung, Chul Ho, Lee, Young Moo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 95
container_issue 1
container_start_page 88
container_title Desalination
container_volume 233
creator Han, Sang Hoon
Kim, Gun Wook
Jung, Chul Ho
Lee, Young Moo
description Microporous carbon membranes have shown extraordinary gas transport performance with thermal and chemical stability. The permeation characteristics of carbon membranes can be simply controlled by pyrolysis conditions. However, the results from a regulation of the factors give trade-off relationship. To overcome the trade-off relationship, carbon–silica membranes derived from poly(imide siloxane) composed of continuous polyimide matrix and porous siloxane domains were reported. To obtain higher permeability without a severe loss in selectivity, mesoporous alumina particles were introduced to the carbon–silica membrane. Poly(imide siloxane)–alumina composites were prepared as precursors and pyrolyzed at 600°C. The morphologies were observed using FE-SEM with energy dispersive spectroscopy. Pore characteristics were investigated by nitrogen adsorption/desorption experiments. The alumina-loaded carbon membrane showed a high volume of adsorbed nitrogen, indicating high surface area and pore volume. Gas permeation properties were measured at room temperature by the time-lag method for small gas molecules. The carbon–silica–alumina membranes pyrolyzed at 600°C had CO 2 permeability of 1765 Barrer (10 −10 cm 3 (STP) cm cm −2 s cm Hg) and a CO 2/N 2 selectivity of 28, while the carbon–silica membranes had CO 2 permeability of 610 Barrer and CO 2/N 2 selectivity of 34.
doi_str_mv 10.1016/j.desal.2007.09.030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19551514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001191640800461X</els_id><sourcerecordid>14020429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-f296276c29de6d8ac422c3287d1360c449d2c3a43def5d885033a704d1b17eaf3</originalsourceid><addsrcrecordid>eNqNkT1vFDEQhi1EJI7AL6BxAyLFbsYf--GCAp0SQEpEAdSWz55NfNpdH569SPn38XEnSkg1M9Iz71h-GHsnoBYg2sttHZDcWEuArgZTg4IXbCX6TlVat_olWwEIURnR6lfsNdG2jNIotWK0TvOS08jTwHcpI_f3Lju_YI60RE88zty7vEkzn9KIfj-6zCniA_IJp012MxL_uL79cXvB9xTnO57ynZujv4zzqeP3j5scA5_cIdWN9IadDaXg21M9Z7-ur36uv1Y33798W3--qbxuuqUapGll13ppArahd15L6ZXsuyBUC15rE8rstAo4NKHvG1DKdaCD2IgO3aDO2Ydj7i6n33ukxU6RPI5jeXTakxWmaUQj9LNAaGT_f1D3vZSNeQYIErQ8gOoI-pyIMg52l-Pk8qMVYA9u7db-cWsPbi0YW9yWrfeneEfejUPR4CP9XZVgoAEtCvfpyGH55oeI2ZKPOHsMMaNfbEjxn3eeADnou1U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14020429</pqid></control><display><type>article</type><title>Control of pore characteristics in carbon molecular sieve membranes (CMSM) using organic/inorganic hybrid materials</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Han, Sang Hoon ; Kim, Gun Wook ; Jung, Chul Ho ; Lee, Young Moo</creator><creatorcontrib>Han, Sang Hoon ; Kim, Gun Wook ; Jung, Chul Ho ; Lee, Young Moo</creatorcontrib><description>Microporous carbon membranes have shown extraordinary gas transport performance with thermal and chemical stability. The permeation characteristics of carbon membranes can be simply controlled by pyrolysis conditions. However, the results from a regulation of the factors give trade-off relationship. To overcome the trade-off relationship, carbon–silica membranes derived from poly(imide siloxane) composed of continuous polyimide matrix and porous siloxane domains were reported. To obtain higher permeability without a severe loss in selectivity, mesoporous alumina particles were introduced to the carbon–silica membrane. Poly(imide siloxane)–alumina composites were prepared as precursors and pyrolyzed at 600°C. The morphologies were observed using FE-SEM with energy dispersive spectroscopy. Pore characteristics were investigated by nitrogen adsorption/desorption experiments. The alumina-loaded carbon membrane showed a high volume of adsorbed nitrogen, indicating high surface area and pore volume. Gas permeation properties were measured at room temperature by the time-lag method for small gas molecules. The carbon–silica–alumina membranes pyrolyzed at 600°C had CO 2 permeability of 1765 Barrer (10 −10 cm 3 (STP) cm cm −2 s cm Hg) and a CO 2/N 2 selectivity of 28, while the carbon–silica membranes had CO 2 permeability of 610 Barrer and CO 2/N 2 selectivity of 34.</description><identifier>ISSN: 0011-9164</identifier><identifier>EISSN: 1873-4464</identifier><identifier>DOI: 10.1016/j.desal.2007.09.030</identifier><identifier>CODEN: DSLNAH</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adsorption ; Applied sciences ; Carbon membrane ; Carbon–silica–alumina ; Chemical engineering ; Composite membrane ; Exact sciences and technology ; Gas separation ; Membrane separation (reverse osmosis, dialysis...) ; Pollution</subject><ispartof>Desalination, 2008-12, Vol.233 (1), p.88-95</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-f296276c29de6d8ac422c3287d1360c449d2c3a43def5d885033a704d1b17eaf3</citedby><cites>FETCH-LOGICAL-c457t-f296276c29de6d8ac422c3287d1360c449d2c3a43def5d885033a704d1b17eaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.desal.2007.09.030$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20905041$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Sang Hoon</creatorcontrib><creatorcontrib>Kim, Gun Wook</creatorcontrib><creatorcontrib>Jung, Chul Ho</creatorcontrib><creatorcontrib>Lee, Young Moo</creatorcontrib><title>Control of pore characteristics in carbon molecular sieve membranes (CMSM) using organic/inorganic hybrid materials</title><title>Desalination</title><description>Microporous carbon membranes have shown extraordinary gas transport performance with thermal and chemical stability. The permeation characteristics of carbon membranes can be simply controlled by pyrolysis conditions. However, the results from a regulation of the factors give trade-off relationship. To overcome the trade-off relationship, carbon–silica membranes derived from poly(imide siloxane) composed of continuous polyimide matrix and porous siloxane domains were reported. To obtain higher permeability without a severe loss in selectivity, mesoporous alumina particles were introduced to the carbon–silica membrane. Poly(imide siloxane)–alumina composites were prepared as precursors and pyrolyzed at 600°C. The morphologies were observed using FE-SEM with energy dispersive spectroscopy. Pore characteristics were investigated by nitrogen adsorption/desorption experiments. The alumina-loaded carbon membrane showed a high volume of adsorbed nitrogen, indicating high surface area and pore volume. Gas permeation properties were measured at room temperature by the time-lag method for small gas molecules. The carbon–silica–alumina membranes pyrolyzed at 600°C had CO 2 permeability of 1765 Barrer (10 −10 cm 3 (STP) cm cm −2 s cm Hg) and a CO 2/N 2 selectivity of 28, while the carbon–silica membranes had CO 2 permeability of 610 Barrer and CO 2/N 2 selectivity of 34.</description><subject>Adsorption</subject><subject>Applied sciences</subject><subject>Carbon membrane</subject><subject>Carbon–silica–alumina</subject><subject>Chemical engineering</subject><subject>Composite membrane</subject><subject>Exact sciences and technology</subject><subject>Gas separation</subject><subject>Membrane separation (reverse osmosis, dialysis...)</subject><subject>Pollution</subject><issn>0011-9164</issn><issn>1873-4464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkT1vFDEQhi1EJI7AL6BxAyLFbsYf--GCAp0SQEpEAdSWz55NfNpdH569SPn38XEnSkg1M9Iz71h-GHsnoBYg2sttHZDcWEuArgZTg4IXbCX6TlVat_olWwEIURnR6lfsNdG2jNIotWK0TvOS08jTwHcpI_f3Lju_YI60RE88zty7vEkzn9KIfj-6zCniA_IJp012MxL_uL79cXvB9xTnO57ynZujv4zzqeP3j5scA5_cIdWN9IadDaXg21M9Z7-ur36uv1Y33798W3--qbxuuqUapGll13ppArahd15L6ZXsuyBUC15rE8rstAo4NKHvG1DKdaCD2IgO3aDO2Ydj7i6n33ukxU6RPI5jeXTakxWmaUQj9LNAaGT_f1D3vZSNeQYIErQ8gOoI-pyIMg52l-Pk8qMVYA9u7db-cWsPbi0YW9yWrfeneEfejUPR4CP9XZVgoAEtCvfpyGH55oeI2ZKPOHsMMaNfbEjxn3eeADnou1U</recordid><startdate>20081215</startdate><enddate>20081215</enddate><creator>Han, Sang Hoon</creator><creator>Kim, Gun Wook</creator><creator>Jung, Chul Ho</creator><creator>Lee, Young Moo</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7UA</scope></search><sort><creationdate>20081215</creationdate><title>Control of pore characteristics in carbon molecular sieve membranes (CMSM) using organic/inorganic hybrid materials</title><author>Han, Sang Hoon ; Kim, Gun Wook ; Jung, Chul Ho ; Lee, Young Moo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-f296276c29de6d8ac422c3287d1360c449d2c3a43def5d885033a704d1b17eaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adsorption</topic><topic>Applied sciences</topic><topic>Carbon membrane</topic><topic>Carbon–silica–alumina</topic><topic>Chemical engineering</topic><topic>Composite membrane</topic><topic>Exact sciences and technology</topic><topic>Gas separation</topic><topic>Membrane separation (reverse osmosis, dialysis...)</topic><topic>Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Sang Hoon</creatorcontrib><creatorcontrib>Kim, Gun Wook</creatorcontrib><creatorcontrib>Jung, Chul Ho</creatorcontrib><creatorcontrib>Lee, Young Moo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><jtitle>Desalination</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Sang Hoon</au><au>Kim, Gun Wook</au><au>Jung, Chul Ho</au><au>Lee, Young Moo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of pore characteristics in carbon molecular sieve membranes (CMSM) using organic/inorganic hybrid materials</atitle><jtitle>Desalination</jtitle><date>2008-12-15</date><risdate>2008</risdate><volume>233</volume><issue>1</issue><spage>88</spage><epage>95</epage><pages>88-95</pages><issn>0011-9164</issn><eissn>1873-4464</eissn><coden>DSLNAH</coden><abstract>Microporous carbon membranes have shown extraordinary gas transport performance with thermal and chemical stability. The permeation characteristics of carbon membranes can be simply controlled by pyrolysis conditions. However, the results from a regulation of the factors give trade-off relationship. To overcome the trade-off relationship, carbon–silica membranes derived from poly(imide siloxane) composed of continuous polyimide matrix and porous siloxane domains were reported. To obtain higher permeability without a severe loss in selectivity, mesoporous alumina particles were introduced to the carbon–silica membrane. Poly(imide siloxane)–alumina composites were prepared as precursors and pyrolyzed at 600°C. The morphologies were observed using FE-SEM with energy dispersive spectroscopy. Pore characteristics were investigated by nitrogen adsorption/desorption experiments. The alumina-loaded carbon membrane showed a high volume of adsorbed nitrogen, indicating high surface area and pore volume. Gas permeation properties were measured at room temperature by the time-lag method for small gas molecules. The carbon–silica–alumina membranes pyrolyzed at 600°C had CO 2 permeability of 1765 Barrer (10 −10 cm 3 (STP) cm cm −2 s cm Hg) and a CO 2/N 2 selectivity of 28, while the carbon–silica membranes had CO 2 permeability of 610 Barrer and CO 2/N 2 selectivity of 34.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.desal.2007.09.030</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0011-9164
ispartof Desalination, 2008-12, Vol.233 (1), p.88-95
issn 0011-9164
1873-4464
language eng
recordid cdi_proquest_miscellaneous_19551514
source Elsevier ScienceDirect Journals Complete
subjects Adsorption
Applied sciences
Carbon membrane
Carbon–silica–alumina
Chemical engineering
Composite membrane
Exact sciences and technology
Gas separation
Membrane separation (reverse osmosis, dialysis...)
Pollution
title Control of pore characteristics in carbon molecular sieve membranes (CMSM) using organic/inorganic hybrid materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A44%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20pore%20characteristics%20in%20carbon%20molecular%20sieve%20membranes%20(CMSM)%20using%20organic/inorganic%20hybrid%20materials&rft.jtitle=Desalination&rft.au=Han,%20Sang%20Hoon&rft.date=2008-12-15&rft.volume=233&rft.issue=1&rft.spage=88&rft.epage=95&rft.pages=88-95&rft.issn=0011-9164&rft.eissn=1873-4464&rft.coden=DSLNAH&rft_id=info:doi/10.1016/j.desal.2007.09.030&rft_dat=%3Cproquest_cross%3E14020429%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14020429&rft_id=info:pmid/&rft_els_id=S001191640800461X&rfr_iscdi=true