Detection and Analysis of Targeted Biological Cells by Electrophoretic Coulter Method

Combining the electrophoresis and conventional Coulter methods, we previously proposed the electrophoretic Coulter method (ECM), enabling simultaneous analysis of the size, number, and zeta potential of individual specimens. We validated the ECM experimentally using standard polystyrene particles an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2017-11, Vol.89 (22), p.12450-12457
Hauptverfasser: Nakajima, Yoshikata, Ukai, Tomofumi, Shimizu, Toshiaki, Ogata, Kazuhei, Iwai, Seiki, Takahashi, Naohiro, Aki, Atsushi, Mizuki, Toru, Maekawa, Toru, Hanajiri, Tatsuro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12457
container_issue 22
container_start_page 12450
container_title Analytical chemistry (Washington)
container_volume 89
creator Nakajima, Yoshikata
Ukai, Tomofumi
Shimizu, Toshiaki
Ogata, Kazuhei
Iwai, Seiki
Takahashi, Naohiro
Aki, Atsushi
Mizuki, Toru
Maekawa, Toru
Hanajiri, Tatsuro
description Combining the electrophoresis and conventional Coulter methods, we previously proposed the electrophoretic Coulter method (ECM), enabling simultaneous analysis of the size, number, and zeta potential of individual specimens. We validated the ECM experimentally using standard polystyrene particles and red blood cells (RBCs) from sheep; the latter was the first ECM application to biological particles in biotechnology research. However, specimens are prevented from passing through the ECM module aperture, which prevents accurate determination of the zeta potential of each specimen. This problem is caused by electro-osmotic flow (EOF) due to the high zeta potential at the ECM microchannel surfaces. To significantly improve ECM feasibility for biomedicine, we here propose a method to estimate the zeta potential at the ECM microchannel surfaces separate from the zeta potential of each specimen, by investigating the electric-field dependence of the specimen’s experimental electrophoretic velocity. We minimize the zeta potential at the microchannel surfaces by applying an organic-molecule coating, and we suppress the surface zeta potential and its resultant EOF by optimizing the microchannel geometry. We demonstrate that the ECM can distinguish between different biological cells using the differences in zeta potential values and/or sizes. We also demonstrate that the ECM can determine the number of biomolecules attached to individual cells and identify whether the average cell state in an analyzed vial is alive or dead. The high-performance ECM can detect cellular morphology alterations, improve immunologic test sensitivity, and identify cell states (living, dying, and dead); this information is clinically useful for early diagnosis and its follow-up.
doi_str_mv 10.1021/acs.analchem.7b03533
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1955071956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1982175884</sourcerecordid><originalsourceid>FETCH-LOGICAL-a479t-73ea6e56e2ace0619beba2517729a8fbf75da9122f7653c379283f07a98d7c1f3</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EoqXwBghZYmFJubZrOxlL-ZWKWNo5cpybNlVaFzsZ-va4agGJgcV38Pm-ax9CrhkMGXB2b2wYmo1p7BLXQ12AkEKckD6THBKVpvyU9AFAJFwD9MhFCCsAxoCpc9LjGSihle6T-SO2aNvabajZlHQcC3ehDtRVdGb8Il6W9KF2jVvU1jR0gk0TaLGjT01MebddOo9tbenEdU2Lnr5ju3TlJTmrTBPw6jgHZP78NJu8JtOPl7fJeJqYkc7aRAs0CqVCbiyCYlmBheGSac0zk1ZFpWVpMsZ5pZUUVuiMp6ICbbK01JZVYkDuDr1b7z47DG2-roONbzQbdF3IWSYl6HiqiN7-QVeu8_G7eyrlTMs0HUVqdKCsdyF4rPKtr9fG73IG-V57HrXn39rzo_YYuzmWd8Uay5_Qt-cIwAHYx38X_9f5BdFekQU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1982175884</pqid></control><display><type>article</type><title>Detection and Analysis of Targeted Biological Cells by Electrophoretic Coulter Method</title><source>American Chemical Society Publications</source><creator>Nakajima, Yoshikata ; Ukai, Tomofumi ; Shimizu, Toshiaki ; Ogata, Kazuhei ; Iwai, Seiki ; Takahashi, Naohiro ; Aki, Atsushi ; Mizuki, Toru ; Maekawa, Toru ; Hanajiri, Tatsuro</creator><creatorcontrib>Nakajima, Yoshikata ; Ukai, Tomofumi ; Shimizu, Toshiaki ; Ogata, Kazuhei ; Iwai, Seiki ; Takahashi, Naohiro ; Aki, Atsushi ; Mizuki, Toru ; Maekawa, Toru ; Hanajiri, Tatsuro</creatorcontrib><description>Combining the electrophoresis and conventional Coulter methods, we previously proposed the electrophoretic Coulter method (ECM), enabling simultaneous analysis of the size, number, and zeta potential of individual specimens. We validated the ECM experimentally using standard polystyrene particles and red blood cells (RBCs) from sheep; the latter was the first ECM application to biological particles in biotechnology research. However, specimens are prevented from passing through the ECM module aperture, which prevents accurate determination of the zeta potential of each specimen. This problem is caused by electro-osmotic flow (EOF) due to the high zeta potential at the ECM microchannel surfaces. To significantly improve ECM feasibility for biomedicine, we here propose a method to estimate the zeta potential at the ECM microchannel surfaces separate from the zeta potential of each specimen, by investigating the electric-field dependence of the specimen’s experimental electrophoretic velocity. We minimize the zeta potential at the microchannel surfaces by applying an organic-molecule coating, and we suppress the surface zeta potential and its resultant EOF by optimizing the microchannel geometry. We demonstrate that the ECM can distinguish between different biological cells using the differences in zeta potential values and/or sizes. We also demonstrate that the ECM can determine the number of biomolecules attached to individual cells and identify whether the average cell state in an analyzed vial is alive or dead. The high-performance ECM can detect cellular morphology alterations, improve immunologic test sensitivity, and identify cell states (living, dying, and dead); this information is clinically useful for early diagnosis and its follow-up.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.7b03533</identifier><identifier>PMID: 29063767</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aperture ; Biomolecules ; Biotechnology ; Cells ; Cytology ; Electrophoresis ; Erythrocytes ; Experiments ; Extracellular matrix ; Feasibility studies ; Mathematical morphology ; Morphology ; Polystyrene ; Polystyrene resins ; Sheep ; Velocity ; Zeta potential</subject><ispartof>Analytical chemistry (Washington), 2017-11, Vol.89 (22), p.12450-12457</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 21, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a479t-73ea6e56e2ace0619beba2517729a8fbf75da9122f7653c379283f07a98d7c1f3</citedby><cites>FETCH-LOGICAL-a479t-73ea6e56e2ace0619beba2517729a8fbf75da9122f7653c379283f07a98d7c1f3</cites><orcidid>0000-0002-0302-7386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.7b03533$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.7b03533$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29063767$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakajima, Yoshikata</creatorcontrib><creatorcontrib>Ukai, Tomofumi</creatorcontrib><creatorcontrib>Shimizu, Toshiaki</creatorcontrib><creatorcontrib>Ogata, Kazuhei</creatorcontrib><creatorcontrib>Iwai, Seiki</creatorcontrib><creatorcontrib>Takahashi, Naohiro</creatorcontrib><creatorcontrib>Aki, Atsushi</creatorcontrib><creatorcontrib>Mizuki, Toru</creatorcontrib><creatorcontrib>Maekawa, Toru</creatorcontrib><creatorcontrib>Hanajiri, Tatsuro</creatorcontrib><title>Detection and Analysis of Targeted Biological Cells by Electrophoretic Coulter Method</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Combining the electrophoresis and conventional Coulter methods, we previously proposed the electrophoretic Coulter method (ECM), enabling simultaneous analysis of the size, number, and zeta potential of individual specimens. We validated the ECM experimentally using standard polystyrene particles and red blood cells (RBCs) from sheep; the latter was the first ECM application to biological particles in biotechnology research. However, specimens are prevented from passing through the ECM module aperture, which prevents accurate determination of the zeta potential of each specimen. This problem is caused by electro-osmotic flow (EOF) due to the high zeta potential at the ECM microchannel surfaces. To significantly improve ECM feasibility for biomedicine, we here propose a method to estimate the zeta potential at the ECM microchannel surfaces separate from the zeta potential of each specimen, by investigating the electric-field dependence of the specimen’s experimental electrophoretic velocity. We minimize the zeta potential at the microchannel surfaces by applying an organic-molecule coating, and we suppress the surface zeta potential and its resultant EOF by optimizing the microchannel geometry. We demonstrate that the ECM can distinguish between different biological cells using the differences in zeta potential values and/or sizes. We also demonstrate that the ECM can determine the number of biomolecules attached to individual cells and identify whether the average cell state in an analyzed vial is alive or dead. The high-performance ECM can detect cellular morphology alterations, improve immunologic test sensitivity, and identify cell states (living, dying, and dead); this information is clinically useful for early diagnosis and its follow-up.</description><subject>Aperture</subject><subject>Biomolecules</subject><subject>Biotechnology</subject><subject>Cells</subject><subject>Cytology</subject><subject>Electrophoresis</subject><subject>Erythrocytes</subject><subject>Experiments</subject><subject>Extracellular matrix</subject><subject>Feasibility studies</subject><subject>Mathematical morphology</subject><subject>Morphology</subject><subject>Polystyrene</subject><subject>Polystyrene resins</subject><subject>Sheep</subject><subject>Velocity</subject><subject>Zeta potential</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAURi0EoqXwBghZYmFJubZrOxlL-ZWKWNo5cpybNlVaFzsZ-va4agGJgcV38Pm-ax9CrhkMGXB2b2wYmo1p7BLXQ12AkEKckD6THBKVpvyU9AFAJFwD9MhFCCsAxoCpc9LjGSihle6T-SO2aNvabajZlHQcC3ehDtRVdGb8Il6W9KF2jVvU1jR0gk0TaLGjT01MebddOo9tbenEdU2Lnr5ju3TlJTmrTBPw6jgHZP78NJu8JtOPl7fJeJqYkc7aRAs0CqVCbiyCYlmBheGSac0zk1ZFpWVpMsZ5pZUUVuiMp6ICbbK01JZVYkDuDr1b7z47DG2-roONbzQbdF3IWSYl6HiqiN7-QVeu8_G7eyrlTMs0HUVqdKCsdyF4rPKtr9fG73IG-V57HrXn39rzo_YYuzmWd8Uay5_Qt-cIwAHYx38X_9f5BdFekQU</recordid><startdate>20171121</startdate><enddate>20171121</enddate><creator>Nakajima, Yoshikata</creator><creator>Ukai, Tomofumi</creator><creator>Shimizu, Toshiaki</creator><creator>Ogata, Kazuhei</creator><creator>Iwai, Seiki</creator><creator>Takahashi, Naohiro</creator><creator>Aki, Atsushi</creator><creator>Mizuki, Toru</creator><creator>Maekawa, Toru</creator><creator>Hanajiri, Tatsuro</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0302-7386</orcidid></search><sort><creationdate>20171121</creationdate><title>Detection and Analysis of Targeted Biological Cells by Electrophoretic Coulter Method</title><author>Nakajima, Yoshikata ; Ukai, Tomofumi ; Shimizu, Toshiaki ; Ogata, Kazuhei ; Iwai, Seiki ; Takahashi, Naohiro ; Aki, Atsushi ; Mizuki, Toru ; Maekawa, Toru ; Hanajiri, Tatsuro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a479t-73ea6e56e2ace0619beba2517729a8fbf75da9122f7653c379283f07a98d7c1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aperture</topic><topic>Biomolecules</topic><topic>Biotechnology</topic><topic>Cells</topic><topic>Cytology</topic><topic>Electrophoresis</topic><topic>Erythrocytes</topic><topic>Experiments</topic><topic>Extracellular matrix</topic><topic>Feasibility studies</topic><topic>Mathematical morphology</topic><topic>Morphology</topic><topic>Polystyrene</topic><topic>Polystyrene resins</topic><topic>Sheep</topic><topic>Velocity</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakajima, Yoshikata</creatorcontrib><creatorcontrib>Ukai, Tomofumi</creatorcontrib><creatorcontrib>Shimizu, Toshiaki</creatorcontrib><creatorcontrib>Ogata, Kazuhei</creatorcontrib><creatorcontrib>Iwai, Seiki</creatorcontrib><creatorcontrib>Takahashi, Naohiro</creatorcontrib><creatorcontrib>Aki, Atsushi</creatorcontrib><creatorcontrib>Mizuki, Toru</creatorcontrib><creatorcontrib>Maekawa, Toru</creatorcontrib><creatorcontrib>Hanajiri, Tatsuro</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakajima, Yoshikata</au><au>Ukai, Tomofumi</au><au>Shimizu, Toshiaki</au><au>Ogata, Kazuhei</au><au>Iwai, Seiki</au><au>Takahashi, Naohiro</au><au>Aki, Atsushi</au><au>Mizuki, Toru</au><au>Maekawa, Toru</au><au>Hanajiri, Tatsuro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection and Analysis of Targeted Biological Cells by Electrophoretic Coulter Method</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2017-11-21</date><risdate>2017</risdate><volume>89</volume><issue>22</issue><spage>12450</spage><epage>12457</epage><pages>12450-12457</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Combining the electrophoresis and conventional Coulter methods, we previously proposed the electrophoretic Coulter method (ECM), enabling simultaneous analysis of the size, number, and zeta potential of individual specimens. We validated the ECM experimentally using standard polystyrene particles and red blood cells (RBCs) from sheep; the latter was the first ECM application to biological particles in biotechnology research. However, specimens are prevented from passing through the ECM module aperture, which prevents accurate determination of the zeta potential of each specimen. This problem is caused by electro-osmotic flow (EOF) due to the high zeta potential at the ECM microchannel surfaces. To significantly improve ECM feasibility for biomedicine, we here propose a method to estimate the zeta potential at the ECM microchannel surfaces separate from the zeta potential of each specimen, by investigating the electric-field dependence of the specimen’s experimental electrophoretic velocity. We minimize the zeta potential at the microchannel surfaces by applying an organic-molecule coating, and we suppress the surface zeta potential and its resultant EOF by optimizing the microchannel geometry. We demonstrate that the ECM can distinguish between different biological cells using the differences in zeta potential values and/or sizes. We also demonstrate that the ECM can determine the number of biomolecules attached to individual cells and identify whether the average cell state in an analyzed vial is alive or dead. The high-performance ECM can detect cellular morphology alterations, improve immunologic test sensitivity, and identify cell states (living, dying, and dead); this information is clinically useful for early diagnosis and its follow-up.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29063767</pmid><doi>10.1021/acs.analchem.7b03533</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0302-7386</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2017-11, Vol.89 (22), p.12450-12457
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1955071956
source American Chemical Society Publications
subjects Aperture
Biomolecules
Biotechnology
Cells
Cytology
Electrophoresis
Erythrocytes
Experiments
Extracellular matrix
Feasibility studies
Mathematical morphology
Morphology
Polystyrene
Polystyrene resins
Sheep
Velocity
Zeta potential
title Detection and Analysis of Targeted Biological Cells by Electrophoretic Coulter Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A53%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20and%20Analysis%20of%20Targeted%20Biological%20Cells%20by%20Electrophoretic%20Coulter%20Method&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Nakajima,%20Yoshikata&rft.date=2017-11-21&rft.volume=89&rft.issue=22&rft.spage=12450&rft.epage=12457&rft.pages=12450-12457&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.7b03533&rft_dat=%3Cproquest_cross%3E1982175884%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1982175884&rft_id=info:pmid/29063767&rfr_iscdi=true