Detection and Analysis of Targeted Biological Cells by Electrophoretic Coulter Method
Combining the electrophoresis and conventional Coulter methods, we previously proposed the electrophoretic Coulter method (ECM), enabling simultaneous analysis of the size, number, and zeta potential of individual specimens. We validated the ECM experimentally using standard polystyrene particles an...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2017-11, Vol.89 (22), p.12450-12457 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12457 |
---|---|
container_issue | 22 |
container_start_page | 12450 |
container_title | Analytical chemistry (Washington) |
container_volume | 89 |
creator | Nakajima, Yoshikata Ukai, Tomofumi Shimizu, Toshiaki Ogata, Kazuhei Iwai, Seiki Takahashi, Naohiro Aki, Atsushi Mizuki, Toru Maekawa, Toru Hanajiri, Tatsuro |
description | Combining the electrophoresis and conventional Coulter methods, we previously proposed the electrophoretic Coulter method (ECM), enabling simultaneous analysis of the size, number, and zeta potential of individual specimens. We validated the ECM experimentally using standard polystyrene particles and red blood cells (RBCs) from sheep; the latter was the first ECM application to biological particles in biotechnology research. However, specimens are prevented from passing through the ECM module aperture, which prevents accurate determination of the zeta potential of each specimen. This problem is caused by electro-osmotic flow (EOF) due to the high zeta potential at the ECM microchannel surfaces. To significantly improve ECM feasibility for biomedicine, we here propose a method to estimate the zeta potential at the ECM microchannel surfaces separate from the zeta potential of each specimen, by investigating the electric-field dependence of the specimen’s experimental electrophoretic velocity. We minimize the zeta potential at the microchannel surfaces by applying an organic-molecule coating, and we suppress the surface zeta potential and its resultant EOF by optimizing the microchannel geometry. We demonstrate that the ECM can distinguish between different biological cells using the differences in zeta potential values and/or sizes. We also demonstrate that the ECM can determine the number of biomolecules attached to individual cells and identify whether the average cell state in an analyzed vial is alive or dead. The high-performance ECM can detect cellular morphology alterations, improve immunologic test sensitivity, and identify cell states (living, dying, and dead); this information is clinically useful for early diagnosis and its follow-up. |
doi_str_mv | 10.1021/acs.analchem.7b03533 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1955071956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1982175884</sourcerecordid><originalsourceid>FETCH-LOGICAL-a479t-73ea6e56e2ace0619beba2517729a8fbf75da9122f7653c379283f07a98d7c1f3</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EoqXwBghZYmFJubZrOxlL-ZWKWNo5cpybNlVaFzsZ-va4agGJgcV38Pm-ax9CrhkMGXB2b2wYmo1p7BLXQ12AkEKckD6THBKVpvyU9AFAJFwD9MhFCCsAxoCpc9LjGSihle6T-SO2aNvabajZlHQcC3ehDtRVdGb8Il6W9KF2jVvU1jR0gk0TaLGjT01MebddOo9tbenEdU2Lnr5ju3TlJTmrTBPw6jgHZP78NJu8JtOPl7fJeJqYkc7aRAs0CqVCbiyCYlmBheGSac0zk1ZFpWVpMsZ5pZUUVuiMp6ICbbK01JZVYkDuDr1b7z47DG2-roONbzQbdF3IWSYl6HiqiN7-QVeu8_G7eyrlTMs0HUVqdKCsdyF4rPKtr9fG73IG-V57HrXn39rzo_YYuzmWd8Uay5_Qt-cIwAHYx38X_9f5BdFekQU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1982175884</pqid></control><display><type>article</type><title>Detection and Analysis of Targeted Biological Cells by Electrophoretic Coulter Method</title><source>American Chemical Society Publications</source><creator>Nakajima, Yoshikata ; Ukai, Tomofumi ; Shimizu, Toshiaki ; Ogata, Kazuhei ; Iwai, Seiki ; Takahashi, Naohiro ; Aki, Atsushi ; Mizuki, Toru ; Maekawa, Toru ; Hanajiri, Tatsuro</creator><creatorcontrib>Nakajima, Yoshikata ; Ukai, Tomofumi ; Shimizu, Toshiaki ; Ogata, Kazuhei ; Iwai, Seiki ; Takahashi, Naohiro ; Aki, Atsushi ; Mizuki, Toru ; Maekawa, Toru ; Hanajiri, Tatsuro</creatorcontrib><description>Combining the electrophoresis and conventional Coulter methods, we previously proposed the electrophoretic Coulter method (ECM), enabling simultaneous analysis of the size, number, and zeta potential of individual specimens. We validated the ECM experimentally using standard polystyrene particles and red blood cells (RBCs) from sheep; the latter was the first ECM application to biological particles in biotechnology research. However, specimens are prevented from passing through the ECM module aperture, which prevents accurate determination of the zeta potential of each specimen. This problem is caused by electro-osmotic flow (EOF) due to the high zeta potential at the ECM microchannel surfaces. To significantly improve ECM feasibility for biomedicine, we here propose a method to estimate the zeta potential at the ECM microchannel surfaces separate from the zeta potential of each specimen, by investigating the electric-field dependence of the specimen’s experimental electrophoretic velocity. We minimize the zeta potential at the microchannel surfaces by applying an organic-molecule coating, and we suppress the surface zeta potential and its resultant EOF by optimizing the microchannel geometry. We demonstrate that the ECM can distinguish between different biological cells using the differences in zeta potential values and/or sizes. We also demonstrate that the ECM can determine the number of biomolecules attached to individual cells and identify whether the average cell state in an analyzed vial is alive or dead. The high-performance ECM can detect cellular morphology alterations, improve immunologic test sensitivity, and identify cell states (living, dying, and dead); this information is clinically useful for early diagnosis and its follow-up.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.7b03533</identifier><identifier>PMID: 29063767</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aperture ; Biomolecules ; Biotechnology ; Cells ; Cytology ; Electrophoresis ; Erythrocytes ; Experiments ; Extracellular matrix ; Feasibility studies ; Mathematical morphology ; Morphology ; Polystyrene ; Polystyrene resins ; Sheep ; Velocity ; Zeta potential</subject><ispartof>Analytical chemistry (Washington), 2017-11, Vol.89 (22), p.12450-12457</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 21, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a479t-73ea6e56e2ace0619beba2517729a8fbf75da9122f7653c379283f07a98d7c1f3</citedby><cites>FETCH-LOGICAL-a479t-73ea6e56e2ace0619beba2517729a8fbf75da9122f7653c379283f07a98d7c1f3</cites><orcidid>0000-0002-0302-7386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.7b03533$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.7b03533$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29063767$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakajima, Yoshikata</creatorcontrib><creatorcontrib>Ukai, Tomofumi</creatorcontrib><creatorcontrib>Shimizu, Toshiaki</creatorcontrib><creatorcontrib>Ogata, Kazuhei</creatorcontrib><creatorcontrib>Iwai, Seiki</creatorcontrib><creatorcontrib>Takahashi, Naohiro</creatorcontrib><creatorcontrib>Aki, Atsushi</creatorcontrib><creatorcontrib>Mizuki, Toru</creatorcontrib><creatorcontrib>Maekawa, Toru</creatorcontrib><creatorcontrib>Hanajiri, Tatsuro</creatorcontrib><title>Detection and Analysis of Targeted Biological Cells by Electrophoretic Coulter Method</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Combining the electrophoresis and conventional Coulter methods, we previously proposed the electrophoretic Coulter method (ECM), enabling simultaneous analysis of the size, number, and zeta potential of individual specimens. We validated the ECM experimentally using standard polystyrene particles and red blood cells (RBCs) from sheep; the latter was the first ECM application to biological particles in biotechnology research. However, specimens are prevented from passing through the ECM module aperture, which prevents accurate determination of the zeta potential of each specimen. This problem is caused by electro-osmotic flow (EOF) due to the high zeta potential at the ECM microchannel surfaces. To significantly improve ECM feasibility for biomedicine, we here propose a method to estimate the zeta potential at the ECM microchannel surfaces separate from the zeta potential of each specimen, by investigating the electric-field dependence of the specimen’s experimental electrophoretic velocity. We minimize the zeta potential at the microchannel surfaces by applying an organic-molecule coating, and we suppress the surface zeta potential and its resultant EOF by optimizing the microchannel geometry. We demonstrate that the ECM can distinguish between different biological cells using the differences in zeta potential values and/or sizes. We also demonstrate that the ECM can determine the number of biomolecules attached to individual cells and identify whether the average cell state in an analyzed vial is alive or dead. The high-performance ECM can detect cellular morphology alterations, improve immunologic test sensitivity, and identify cell states (living, dying, and dead); this information is clinically useful for early diagnosis and its follow-up.</description><subject>Aperture</subject><subject>Biomolecules</subject><subject>Biotechnology</subject><subject>Cells</subject><subject>Cytology</subject><subject>Electrophoresis</subject><subject>Erythrocytes</subject><subject>Experiments</subject><subject>Extracellular matrix</subject><subject>Feasibility studies</subject><subject>Mathematical morphology</subject><subject>Morphology</subject><subject>Polystyrene</subject><subject>Polystyrene resins</subject><subject>Sheep</subject><subject>Velocity</subject><subject>Zeta potential</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAURi0EoqXwBghZYmFJubZrOxlL-ZWKWNo5cpybNlVaFzsZ-va4agGJgcV38Pm-ax9CrhkMGXB2b2wYmo1p7BLXQ12AkEKckD6THBKVpvyU9AFAJFwD9MhFCCsAxoCpc9LjGSihle6T-SO2aNvabajZlHQcC3ehDtRVdGb8Il6W9KF2jVvU1jR0gk0TaLGjT01MebddOo9tbenEdU2Lnr5ju3TlJTmrTBPw6jgHZP78NJu8JtOPl7fJeJqYkc7aRAs0CqVCbiyCYlmBheGSac0zk1ZFpWVpMsZ5pZUUVuiMp6ICbbK01JZVYkDuDr1b7z47DG2-roONbzQbdF3IWSYl6HiqiN7-QVeu8_G7eyrlTMs0HUVqdKCsdyF4rPKtr9fG73IG-V57HrXn39rzo_YYuzmWd8Uay5_Qt-cIwAHYx38X_9f5BdFekQU</recordid><startdate>20171121</startdate><enddate>20171121</enddate><creator>Nakajima, Yoshikata</creator><creator>Ukai, Tomofumi</creator><creator>Shimizu, Toshiaki</creator><creator>Ogata, Kazuhei</creator><creator>Iwai, Seiki</creator><creator>Takahashi, Naohiro</creator><creator>Aki, Atsushi</creator><creator>Mizuki, Toru</creator><creator>Maekawa, Toru</creator><creator>Hanajiri, Tatsuro</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0302-7386</orcidid></search><sort><creationdate>20171121</creationdate><title>Detection and Analysis of Targeted Biological Cells by Electrophoretic Coulter Method</title><author>Nakajima, Yoshikata ; Ukai, Tomofumi ; Shimizu, Toshiaki ; Ogata, Kazuhei ; Iwai, Seiki ; Takahashi, Naohiro ; Aki, Atsushi ; Mizuki, Toru ; Maekawa, Toru ; Hanajiri, Tatsuro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a479t-73ea6e56e2ace0619beba2517729a8fbf75da9122f7653c379283f07a98d7c1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aperture</topic><topic>Biomolecules</topic><topic>Biotechnology</topic><topic>Cells</topic><topic>Cytology</topic><topic>Electrophoresis</topic><topic>Erythrocytes</topic><topic>Experiments</topic><topic>Extracellular matrix</topic><topic>Feasibility studies</topic><topic>Mathematical morphology</topic><topic>Morphology</topic><topic>Polystyrene</topic><topic>Polystyrene resins</topic><topic>Sheep</topic><topic>Velocity</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakajima, Yoshikata</creatorcontrib><creatorcontrib>Ukai, Tomofumi</creatorcontrib><creatorcontrib>Shimizu, Toshiaki</creatorcontrib><creatorcontrib>Ogata, Kazuhei</creatorcontrib><creatorcontrib>Iwai, Seiki</creatorcontrib><creatorcontrib>Takahashi, Naohiro</creatorcontrib><creatorcontrib>Aki, Atsushi</creatorcontrib><creatorcontrib>Mizuki, Toru</creatorcontrib><creatorcontrib>Maekawa, Toru</creatorcontrib><creatorcontrib>Hanajiri, Tatsuro</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakajima, Yoshikata</au><au>Ukai, Tomofumi</au><au>Shimizu, Toshiaki</au><au>Ogata, Kazuhei</au><au>Iwai, Seiki</au><au>Takahashi, Naohiro</au><au>Aki, Atsushi</au><au>Mizuki, Toru</au><au>Maekawa, Toru</au><au>Hanajiri, Tatsuro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection and Analysis of Targeted Biological Cells by Electrophoretic Coulter Method</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2017-11-21</date><risdate>2017</risdate><volume>89</volume><issue>22</issue><spage>12450</spage><epage>12457</epage><pages>12450-12457</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Combining the electrophoresis and conventional Coulter methods, we previously proposed the electrophoretic Coulter method (ECM), enabling simultaneous analysis of the size, number, and zeta potential of individual specimens. We validated the ECM experimentally using standard polystyrene particles and red blood cells (RBCs) from sheep; the latter was the first ECM application to biological particles in biotechnology research. However, specimens are prevented from passing through the ECM module aperture, which prevents accurate determination of the zeta potential of each specimen. This problem is caused by electro-osmotic flow (EOF) due to the high zeta potential at the ECM microchannel surfaces. To significantly improve ECM feasibility for biomedicine, we here propose a method to estimate the zeta potential at the ECM microchannel surfaces separate from the zeta potential of each specimen, by investigating the electric-field dependence of the specimen’s experimental electrophoretic velocity. We minimize the zeta potential at the microchannel surfaces by applying an organic-molecule coating, and we suppress the surface zeta potential and its resultant EOF by optimizing the microchannel geometry. We demonstrate that the ECM can distinguish between different biological cells using the differences in zeta potential values and/or sizes. We also demonstrate that the ECM can determine the number of biomolecules attached to individual cells and identify whether the average cell state in an analyzed vial is alive or dead. The high-performance ECM can detect cellular morphology alterations, improve immunologic test sensitivity, and identify cell states (living, dying, and dead); this information is clinically useful for early diagnosis and its follow-up.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29063767</pmid><doi>10.1021/acs.analchem.7b03533</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0302-7386</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2017-11, Vol.89 (22), p.12450-12457 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_1955071956 |
source | American Chemical Society Publications |
subjects | Aperture Biomolecules Biotechnology Cells Cytology Electrophoresis Erythrocytes Experiments Extracellular matrix Feasibility studies Mathematical morphology Morphology Polystyrene Polystyrene resins Sheep Velocity Zeta potential |
title | Detection and Analysis of Targeted Biological Cells by Electrophoretic Coulter Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A53%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20and%20Analysis%20of%20Targeted%20Biological%20Cells%20by%20Electrophoretic%20Coulter%20Method&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Nakajima,%20Yoshikata&rft.date=2017-11-21&rft.volume=89&rft.issue=22&rft.spage=12450&rft.epage=12457&rft.pages=12450-12457&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.7b03533&rft_dat=%3Cproquest_cross%3E1982175884%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1982175884&rft_id=info:pmid/29063767&rfr_iscdi=true |