Chemical imaging of a Symbiodinium sp. cell using synchrotron infrared microspectroscopy: a feasibility study

Summary The symbiotic relationship between corals and Symbiodinium spp. is the key to the success and survival of coral reef ecosystems the world over. Nutrient exchange and chemical communication between the two partners provides the foundation of this key relationship, yet we are far from a comple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microscopy (Oxford) 2018-04, Vol.270 (1), p.83-91
Hauptverfasser: GORDON, B.R., MARTIN, D.E., BAMBERY, K.R., MOTTI, C.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 91
container_issue 1
container_start_page 83
container_title Journal of microscopy (Oxford)
container_volume 270
creator GORDON, B.R.
MARTIN, D.E.
BAMBERY, K.R.
MOTTI, C.A.
description Summary The symbiotic relationship between corals and Symbiodinium spp. is the key to the success and survival of coral reef ecosystems the world over. Nutrient exchange and chemical communication between the two partners provides the foundation of this key relationship, yet we are far from a complete understanding of these processes. This is due, in part, to the difficulties associated with studying an intracellular symbiosis at the small spatial scales required to elucidate metabolic interactions between the two partners. This feasibility study, which accompanied a more extensive investigation of fixed Symbiodinium cells (data unpublished), examines the potential of using synchrotron radiation infrared microspectroscopy (SR‐IRM) for exploring metabolite localisation within a single Symbiodinium cell. In doing so, three chemically distinct subcellular regions of a single Symbiodinium cell were established and correlated to cellular function based on assignment of diagnostic chemical classes. Lay description The symbiotic relationship between corals and their algal symbionts is the key to the success and survival of coral reef ecosystems the world over. Nutrient exchange and chemical communication between the two partners provides the foundation of this key relationship, yet we are far from a complete understanding of these processes. This is due, in part, to the complexity of studying the tiny algal symbiont while it resides within the coral tissue; the symbiont is approximately 1/100th of a millimetre in diameter. Here, we examine the potential of using infrared light to determine the location of metabolites within a single symbiont and in doing so, have identified three regions of biological activity that highlights the potential of this technique.
doi_str_mv 10.1111/jmi.12658
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1955067378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1955067378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3538-352a5dc9ddb961f6f356c9f61fce8aff2fd32019da920ecc01ce24403b47f7773</originalsourceid><addsrcrecordid>eNp1kU1r3DAQhkVpaDZJD_0DRdBLc_DuSLJsubeyNF8k5JDkLGR9JFpsy5XWFP_7aLObHgrVRWJ4eDQzL0JfCCxJPqtN75eEVlx8QAvCKl5QQcRHtACgtKA1hWN0ktIGAAQX8Akd0waqklewQP36xfZeqw77Xj374RkHhxV-mPvWB-MHP_U4jUusbdfhKe2ANA_6JYZtDAP2g4sqWoOzI4Y0Wp3LSYdx_pEtzqrkW9_57YzTdjLzGTpyqkv28-E-RU8Xvx7XV8Xt_eX1-udtoRlnomCcKm50Y0zbVMRVjvFKNy4_tRXKOeoMo0AaoxoKVmsg2tKyBNaWtavrmp2i73vvGMPvyaat7H3ajaAGG6YkScM5VDWrRUa__YNuwhSH3J3MX5QgGlGTTJ3vqd2UKVonx5gXFmdJQO4ykDkD-ZZBZr8ejFPbW_OXfF96BlZ74I_v7Px_k7y5u94rXwGFUZGu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014089871</pqid></control><display><type>article</type><title>Chemical imaging of a Symbiodinium sp. cell using synchrotron infrared microspectroscopy: a feasibility study</title><source>Wiley-Blackwell Journals</source><source>Wiley Free Archive</source><creator>GORDON, B.R. ; MARTIN, D.E. ; BAMBERY, K.R. ; MOTTI, C.A.</creator><creatorcontrib>GORDON, B.R. ; MARTIN, D.E. ; BAMBERY, K.R. ; MOTTI, C.A.</creatorcontrib><description>Summary The symbiotic relationship between corals and Symbiodinium spp. is the key to the success and survival of coral reef ecosystems the world over. Nutrient exchange and chemical communication between the two partners provides the foundation of this key relationship, yet we are far from a complete understanding of these processes. This is due, in part, to the difficulties associated with studying an intracellular symbiosis at the small spatial scales required to elucidate metabolic interactions between the two partners. This feasibility study, which accompanied a more extensive investigation of fixed Symbiodinium cells (data unpublished), examines the potential of using synchrotron radiation infrared microspectroscopy (SR‐IRM) for exploring metabolite localisation within a single Symbiodinium cell. In doing so, three chemically distinct subcellular regions of a single Symbiodinium cell were established and correlated to cellular function based on assignment of diagnostic chemical classes. Lay description The symbiotic relationship between corals and their algal symbionts is the key to the success and survival of coral reef ecosystems the world over. Nutrient exchange and chemical communication between the two partners provides the foundation of this key relationship, yet we are far from a complete understanding of these processes. This is due, in part, to the complexity of studying the tiny algal symbiont while it resides within the coral tissue; the symbiont is approximately 1/100th of a millimetre in diameter. Here, we examine the potential of using infrared light to determine the location of metabolites within a single symbiont and in doing so, have identified three regions of biological activity that highlights the potential of this technique.</description><identifier>ISSN: 0022-2720</identifier><identifier>EISSN: 1365-2818</identifier><identifier>DOI: 10.1111/jmi.12658</identifier><identifier>PMID: 29064560</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Algae ; Biological activity ; Chemical communication ; Coral reefs ; Corals ; Diagnostic systems ; Ecosystems ; Feasibility studies ; FTIR microspectroscopy ; Infrared spectroscopy ; Metabolites ; Survival ; Symbiodinium ; Symbionts ; Symbiosis ; synchrotron ; Synchrotron radiation</subject><ispartof>Journal of microscopy (Oxford), 2018-04, Vol.270 (1), p.83-91</ispartof><rights>2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society</rights><rights>2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.</rights><rights>Journal compilation © 2018 Royal Microscopical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3538-352a5dc9ddb961f6f356c9f61fce8aff2fd32019da920ecc01ce24403b47f7773</citedby><cites>FETCH-LOGICAL-c3538-352a5dc9ddb961f6f356c9f61fce8aff2fd32019da920ecc01ce24403b47f7773</cites><orcidid>0000-0002-2979-1964</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjmi.12658$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjmi.12658$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,27905,27906,45555,45556,46390,46814</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29064560$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>GORDON, B.R.</creatorcontrib><creatorcontrib>MARTIN, D.E.</creatorcontrib><creatorcontrib>BAMBERY, K.R.</creatorcontrib><creatorcontrib>MOTTI, C.A.</creatorcontrib><title>Chemical imaging of a Symbiodinium sp. cell using synchrotron infrared microspectroscopy: a feasibility study</title><title>Journal of microscopy (Oxford)</title><addtitle>J Microsc</addtitle><description>Summary The symbiotic relationship between corals and Symbiodinium spp. is the key to the success and survival of coral reef ecosystems the world over. Nutrient exchange and chemical communication between the two partners provides the foundation of this key relationship, yet we are far from a complete understanding of these processes. This is due, in part, to the difficulties associated with studying an intracellular symbiosis at the small spatial scales required to elucidate metabolic interactions between the two partners. This feasibility study, which accompanied a more extensive investigation of fixed Symbiodinium cells (data unpublished), examines the potential of using synchrotron radiation infrared microspectroscopy (SR‐IRM) for exploring metabolite localisation within a single Symbiodinium cell. In doing so, three chemically distinct subcellular regions of a single Symbiodinium cell were established and correlated to cellular function based on assignment of diagnostic chemical classes. Lay description The symbiotic relationship between corals and their algal symbionts is the key to the success and survival of coral reef ecosystems the world over. Nutrient exchange and chemical communication between the two partners provides the foundation of this key relationship, yet we are far from a complete understanding of these processes. This is due, in part, to the complexity of studying the tiny algal symbiont while it resides within the coral tissue; the symbiont is approximately 1/100th of a millimetre in diameter. Here, we examine the potential of using infrared light to determine the location of metabolites within a single symbiont and in doing so, have identified three regions of biological activity that highlights the potential of this technique.</description><subject>Algae</subject><subject>Biological activity</subject><subject>Chemical communication</subject><subject>Coral reefs</subject><subject>Corals</subject><subject>Diagnostic systems</subject><subject>Ecosystems</subject><subject>Feasibility studies</subject><subject>FTIR microspectroscopy</subject><subject>Infrared spectroscopy</subject><subject>Metabolites</subject><subject>Survival</subject><subject>Symbiodinium</subject><subject>Symbionts</subject><subject>Symbiosis</subject><subject>synchrotron</subject><subject>Synchrotron radiation</subject><issn>0022-2720</issn><issn>1365-2818</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kU1r3DAQhkVpaDZJD_0DRdBLc_DuSLJsubeyNF8k5JDkLGR9JFpsy5XWFP_7aLObHgrVRWJ4eDQzL0JfCCxJPqtN75eEVlx8QAvCKl5QQcRHtACgtKA1hWN0ktIGAAQX8Akd0waqklewQP36xfZeqw77Xj374RkHhxV-mPvWB-MHP_U4jUusbdfhKe2ANA_6JYZtDAP2g4sqWoOzI4Y0Wp3LSYdx_pEtzqrkW9_57YzTdjLzGTpyqkv28-E-RU8Xvx7XV8Xt_eX1-udtoRlnomCcKm50Y0zbVMRVjvFKNy4_tRXKOeoMo0AaoxoKVmsg2tKyBNaWtavrmp2i73vvGMPvyaat7H3ajaAGG6YkScM5VDWrRUa__YNuwhSH3J3MX5QgGlGTTJ3vqd2UKVonx5gXFmdJQO4ykDkD-ZZBZr8ejFPbW_OXfF96BlZ74I_v7Px_k7y5u94rXwGFUZGu</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>GORDON, B.R.</creator><creator>MARTIN, D.E.</creator><creator>BAMBERY, K.R.</creator><creator>MOTTI, C.A.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2979-1964</orcidid></search><sort><creationdate>201804</creationdate><title>Chemical imaging of a Symbiodinium sp. cell using synchrotron infrared microspectroscopy: a feasibility study</title><author>GORDON, B.R. ; MARTIN, D.E. ; BAMBERY, K.R. ; MOTTI, C.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3538-352a5dc9ddb961f6f356c9f61fce8aff2fd32019da920ecc01ce24403b47f7773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algae</topic><topic>Biological activity</topic><topic>Chemical communication</topic><topic>Coral reefs</topic><topic>Corals</topic><topic>Diagnostic systems</topic><topic>Ecosystems</topic><topic>Feasibility studies</topic><topic>FTIR microspectroscopy</topic><topic>Infrared spectroscopy</topic><topic>Metabolites</topic><topic>Survival</topic><topic>Symbiodinium</topic><topic>Symbionts</topic><topic>Symbiosis</topic><topic>synchrotron</topic><topic>Synchrotron radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GORDON, B.R.</creatorcontrib><creatorcontrib>MARTIN, D.E.</creatorcontrib><creatorcontrib>BAMBERY, K.R.</creatorcontrib><creatorcontrib>MOTTI, C.A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of microscopy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GORDON, B.R.</au><au>MARTIN, D.E.</au><au>BAMBERY, K.R.</au><au>MOTTI, C.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical imaging of a Symbiodinium sp. cell using synchrotron infrared microspectroscopy: a feasibility study</atitle><jtitle>Journal of microscopy (Oxford)</jtitle><addtitle>J Microsc</addtitle><date>2018-04</date><risdate>2018</risdate><volume>270</volume><issue>1</issue><spage>83</spage><epage>91</epage><pages>83-91</pages><issn>0022-2720</issn><eissn>1365-2818</eissn><abstract>Summary The symbiotic relationship between corals and Symbiodinium spp. is the key to the success and survival of coral reef ecosystems the world over. Nutrient exchange and chemical communication between the two partners provides the foundation of this key relationship, yet we are far from a complete understanding of these processes. This is due, in part, to the difficulties associated with studying an intracellular symbiosis at the small spatial scales required to elucidate metabolic interactions between the two partners. This feasibility study, which accompanied a more extensive investigation of fixed Symbiodinium cells (data unpublished), examines the potential of using synchrotron radiation infrared microspectroscopy (SR‐IRM) for exploring metabolite localisation within a single Symbiodinium cell. In doing so, three chemically distinct subcellular regions of a single Symbiodinium cell were established and correlated to cellular function based on assignment of diagnostic chemical classes. Lay description The symbiotic relationship between corals and their algal symbionts is the key to the success and survival of coral reef ecosystems the world over. Nutrient exchange and chemical communication between the two partners provides the foundation of this key relationship, yet we are far from a complete understanding of these processes. This is due, in part, to the complexity of studying the tiny algal symbiont while it resides within the coral tissue; the symbiont is approximately 1/100th of a millimetre in diameter. Here, we examine the potential of using infrared light to determine the location of metabolites within a single symbiont and in doing so, have identified three regions of biological activity that highlights the potential of this technique.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29064560</pmid><doi>10.1111/jmi.12658</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2979-1964</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2720
ispartof Journal of microscopy (Oxford), 2018-04, Vol.270 (1), p.83-91
issn 0022-2720
1365-2818
language eng
recordid cdi_proquest_miscellaneous_1955067378
source Wiley-Blackwell Journals; Wiley Free Archive
subjects Algae
Biological activity
Chemical communication
Coral reefs
Corals
Diagnostic systems
Ecosystems
Feasibility studies
FTIR microspectroscopy
Infrared spectroscopy
Metabolites
Survival
Symbiodinium
Symbionts
Symbiosis
synchrotron
Synchrotron radiation
title Chemical imaging of a Symbiodinium sp. cell using synchrotron infrared microspectroscopy: a feasibility study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A48%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20imaging%20of%20a%20Symbiodinium%20sp.%20cell%20using%20synchrotron%20infrared%20microspectroscopy:%20a%20feasibility%20study&rft.jtitle=Journal%20of%20microscopy%20(Oxford)&rft.au=GORDON,%20B.R.&rft.date=2018-04&rft.volume=270&rft.issue=1&rft.spage=83&rft.epage=91&rft.pages=83-91&rft.issn=0022-2720&rft.eissn=1365-2818&rft_id=info:doi/10.1111/jmi.12658&rft_dat=%3Cproquest_cross%3E1955067378%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2014089871&rft_id=info:pmid/29064560&rfr_iscdi=true