Photovoltaic–Pyroelectric Coupled Effect Induced Electricity for Self‐Powered Photodetector System

Ferroelectric materials have demonstrated novel photovoltaic effect to scavenge solar energy. However, most of the ferroelectric materials with wide bandgaps (2.7–4 eV) suffer from low power conversion efficiency of less than 0.5% due to absorbing only 8–20% of solar spectrum. Instead of harvesting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2017-12, Vol.29 (46), p.n/a
Hauptverfasser: Ma, Nan, Zhang, Kewei, Yang, Ya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 46
container_start_page
container_title Advanced materials (Weinheim)
container_volume 29
creator Ma, Nan
Zhang, Kewei
Yang, Ya
description Ferroelectric materials have demonstrated novel photovoltaic effect to scavenge solar energy. However, most of the ferroelectric materials with wide bandgaps (2.7–4 eV) suffer from low power conversion efficiency of less than 0.5% due to absorbing only 8–20% of solar spectrum. Instead of harvesting solar energy, these ferroelectric materials can be well suited for photodetector applications, especially for sensing near‐UV irradiations. Here, a ferroelectric BaTiO3 film‐based photodetector is demonstrated that can be operated without using any external power source and a fast sensing of 405 nm light illumination is enabled. As compared with photovoltaic effect, both the responsivity and the specific detectivity of the photodetector can be dramatically enhanced by larger than 260% due to the light‐induced photovoltaic–pyroelectric coupled effect. A self‐powered photodetector array system can be utilized to achieve spatially resolved light intensity detection by recording the output voltage signals as a mapping figure. The photovoltaic–pyroelectric coupled effect is utilized to enhance the sensing performance of a self‐powered ITO/BaTiO3/Ag photodetector for realizing fast 405 nm light detection. A self‐powered photodetector array system can be utilized to achieve spatially resolved light‐intensity detection by recording the output voltage signals as a mapping figure.
doi_str_mv 10.1002/adma.201703694
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1954435315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1973441761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4784-b8546cefc43ccce7fa227f229681e04e9415f77aff38862fbbe891aa54ef74c83</originalsourceid><addsrcrecordid>eNqFkctKJDEUhoOMaHvZuhwKZuOm2lwrybJpLyMoNqjrIp06wZKqTptUKbXzEQTf0CeZ9HSPA25chZP_Ox8hP0JHBI8JxvTEVK0ZU0wkZoXmW2hEBCU5x1r8QCOsmch1wdUu2ovxEWOsC1zsoF2qsVBSsxFyswff-WffdKa2H6_vsyF4aMB2obbZ1PfLBqrszLl0k10uqt6uxk1ed0PmfMhuoXEfr28z_wIhxX-NFXQJWoVD7KA9QNvONBEON-c-uj8_u5v-zq9uLi6nk6vccql4PleCFxac5cxaC9IZSqWjVBeKAOagORFOSuMcU6qgbj4HpYkxgoOT3Cq2j47X3mXwTz3ErmzraKFpzAJ8H0uiBedMMCIS-usL-uj7sEivS5RknBNZkESN15QNPsYArlyGujVhKAkuVw2UqwbKzwbSws-Ntp-3UH3i_748AXoNvNQNDN_oysnp9eS__A_yPJWv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1973441761</pqid></control><display><type>article</type><title>Photovoltaic–Pyroelectric Coupled Effect Induced Electricity for Self‐Powered Photodetector System</title><source>Wiley Online Library All Journals</source><creator>Ma, Nan ; Zhang, Kewei ; Yang, Ya</creator><creatorcontrib>Ma, Nan ; Zhang, Kewei ; Yang, Ya</creatorcontrib><description>Ferroelectric materials have demonstrated novel photovoltaic effect to scavenge solar energy. However, most of the ferroelectric materials with wide bandgaps (2.7–4 eV) suffer from low power conversion efficiency of less than 0.5% due to absorbing only 8–20% of solar spectrum. Instead of harvesting solar energy, these ferroelectric materials can be well suited for photodetector applications, especially for sensing near‐UV irradiations. Here, a ferroelectric BaTiO3 film‐based photodetector is demonstrated that can be operated without using any external power source and a fast sensing of 405 nm light illumination is enabled. As compared with photovoltaic effect, both the responsivity and the specific detectivity of the photodetector can be dramatically enhanced by larger than 260% due to the light‐induced photovoltaic–pyroelectric coupled effect. A self‐powered photodetector array system can be utilized to achieve spatially resolved light intensity detection by recording the output voltage signals as a mapping figure. The photovoltaic–pyroelectric coupled effect is utilized to enhance the sensing performance of a self‐powered ITO/BaTiO3/Ag photodetector for realizing fast 405 nm light detection. A self‐powered photodetector array system can be utilized to achieve spatially resolved light‐intensity detection by recording the output voltage signals as a mapping figure.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201703694</identifier><identifier>PMID: 29058793</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Barium titanates ; BaTiO3 ; Energy conversion efficiency ; Energy harvesting ; Ferroelectric materials ; Ferroelectricity ; Light ; Luminous intensity ; photodetectors ; Photometers ; Photovoltaic cells ; Photovoltaic effect ; pyroelectric effect ; self‐powered ; Solar energy</subject><ispartof>Advanced materials (Weinheim), 2017-12, Vol.29 (46), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4784-b8546cefc43ccce7fa227f229681e04e9415f77aff38862fbbe891aa54ef74c83</citedby><cites>FETCH-LOGICAL-c4784-b8546cefc43ccce7fa227f229681e04e9415f77aff38862fbbe891aa54ef74c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201703694$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201703694$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29058793$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Nan</creatorcontrib><creatorcontrib>Zhang, Kewei</creatorcontrib><creatorcontrib>Yang, Ya</creatorcontrib><title>Photovoltaic–Pyroelectric Coupled Effect Induced Electricity for Self‐Powered Photodetector System</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Ferroelectric materials have demonstrated novel photovoltaic effect to scavenge solar energy. However, most of the ferroelectric materials with wide bandgaps (2.7–4 eV) suffer from low power conversion efficiency of less than 0.5% due to absorbing only 8–20% of solar spectrum. Instead of harvesting solar energy, these ferroelectric materials can be well suited for photodetector applications, especially for sensing near‐UV irradiations. Here, a ferroelectric BaTiO3 film‐based photodetector is demonstrated that can be operated without using any external power source and a fast sensing of 405 nm light illumination is enabled. As compared with photovoltaic effect, both the responsivity and the specific detectivity of the photodetector can be dramatically enhanced by larger than 260% due to the light‐induced photovoltaic–pyroelectric coupled effect. A self‐powered photodetector array system can be utilized to achieve spatially resolved light intensity detection by recording the output voltage signals as a mapping figure. The photovoltaic–pyroelectric coupled effect is utilized to enhance the sensing performance of a self‐powered ITO/BaTiO3/Ag photodetector for realizing fast 405 nm light detection. A self‐powered photodetector array system can be utilized to achieve spatially resolved light‐intensity detection by recording the output voltage signals as a mapping figure.</description><subject>Barium titanates</subject><subject>BaTiO3</subject><subject>Energy conversion efficiency</subject><subject>Energy harvesting</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Light</subject><subject>Luminous intensity</subject><subject>photodetectors</subject><subject>Photometers</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic effect</subject><subject>pyroelectric effect</subject><subject>self‐powered</subject><subject>Solar energy</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkctKJDEUhoOMaHvZuhwKZuOm2lwrybJpLyMoNqjrIp06wZKqTptUKbXzEQTf0CeZ9HSPA25chZP_Ox8hP0JHBI8JxvTEVK0ZU0wkZoXmW2hEBCU5x1r8QCOsmch1wdUu2ovxEWOsC1zsoF2qsVBSsxFyswff-WffdKa2H6_vsyF4aMB2obbZ1PfLBqrszLl0k10uqt6uxk1ed0PmfMhuoXEfr28z_wIhxX-NFXQJWoVD7KA9QNvONBEON-c-uj8_u5v-zq9uLi6nk6vccql4PleCFxac5cxaC9IZSqWjVBeKAOagORFOSuMcU6qgbj4HpYkxgoOT3Cq2j47X3mXwTz3ErmzraKFpzAJ8H0uiBedMMCIS-usL-uj7sEivS5RknBNZkESN15QNPsYArlyGujVhKAkuVw2UqwbKzwbSws-Ntp-3UH3i_748AXoNvNQNDN_oysnp9eS__A_yPJWv</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Ma, Nan</creator><creator>Zhang, Kewei</creator><creator>Yang, Ya</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>201712</creationdate><title>Photovoltaic–Pyroelectric Coupled Effect Induced Electricity for Self‐Powered Photodetector System</title><author>Ma, Nan ; Zhang, Kewei ; Yang, Ya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4784-b8546cefc43ccce7fa227f229681e04e9415f77aff38862fbbe891aa54ef74c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Barium titanates</topic><topic>BaTiO3</topic><topic>Energy conversion efficiency</topic><topic>Energy harvesting</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Light</topic><topic>Luminous intensity</topic><topic>photodetectors</topic><topic>Photometers</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic effect</topic><topic>pyroelectric effect</topic><topic>self‐powered</topic><topic>Solar energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Nan</creatorcontrib><creatorcontrib>Zhang, Kewei</creatorcontrib><creatorcontrib>Yang, Ya</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Nan</au><au>Zhang, Kewei</au><au>Yang, Ya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photovoltaic–Pyroelectric Coupled Effect Induced Electricity for Self‐Powered Photodetector System</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2017-12</date><risdate>2017</risdate><volume>29</volume><issue>46</issue><epage>n/a</epage><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Ferroelectric materials have demonstrated novel photovoltaic effect to scavenge solar energy. However, most of the ferroelectric materials with wide bandgaps (2.7–4 eV) suffer from low power conversion efficiency of less than 0.5% due to absorbing only 8–20% of solar spectrum. Instead of harvesting solar energy, these ferroelectric materials can be well suited for photodetector applications, especially for sensing near‐UV irradiations. Here, a ferroelectric BaTiO3 film‐based photodetector is demonstrated that can be operated without using any external power source and a fast sensing of 405 nm light illumination is enabled. As compared with photovoltaic effect, both the responsivity and the specific detectivity of the photodetector can be dramatically enhanced by larger than 260% due to the light‐induced photovoltaic–pyroelectric coupled effect. A self‐powered photodetector array system can be utilized to achieve spatially resolved light intensity detection by recording the output voltage signals as a mapping figure. The photovoltaic–pyroelectric coupled effect is utilized to enhance the sensing performance of a self‐powered ITO/BaTiO3/Ag photodetector for realizing fast 405 nm light detection. A self‐powered photodetector array system can be utilized to achieve spatially resolved light‐intensity detection by recording the output voltage signals as a mapping figure.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29058793</pmid><doi>10.1002/adma.201703694</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2017-12, Vol.29 (46), p.n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_1954435315
source Wiley Online Library All Journals
subjects Barium titanates
BaTiO3
Energy conversion efficiency
Energy harvesting
Ferroelectric materials
Ferroelectricity
Light
Luminous intensity
photodetectors
Photometers
Photovoltaic cells
Photovoltaic effect
pyroelectric effect
self‐powered
Solar energy
title Photovoltaic–Pyroelectric Coupled Effect Induced Electricity for Self‐Powered Photodetector System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A36%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photovoltaic%E2%80%93Pyroelectric%20Coupled%20Effect%20Induced%20Electricity%20for%20Self%E2%80%90Powered%20Photodetector%20System&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Ma,%20Nan&rft.date=2017-12&rft.volume=29&rft.issue=46&rft.epage=n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201703694&rft_dat=%3Cproquest_cross%3E1973441761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1973441761&rft_id=info:pmid/29058793&rfr_iscdi=true