Label‐free imaging of redox status and collagen deposition showing metabolic differences in the heart

The heart has high metabolic demand to maintain function. The primary source of energy supply to support correct contractile muscle function differs between a fetus and an adult. In fetal life, ATP is primarily generated by glycolysis and lactate oxidation, whereas following birth, there is a shift...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biophotonics 2018-03, Vol.11 (3), p.n/a
Hauptverfasser: Morrison, Janna L., Sorvina, Alexandra, Darby, Jack R.T., Bader, Christie A., Lock, Mitchell C., Seed, Mike, Kuchel, Tim, Plush, Sally E., Brooks, Douglas A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title Journal of biophotonics
container_volume 11
creator Morrison, Janna L.
Sorvina, Alexandra
Darby, Jack R.T.
Bader, Christie A.
Lock, Mitchell C.
Seed, Mike
Kuchel, Tim
Plush, Sally E.
Brooks, Douglas A.
description The heart has high metabolic demand to maintain function. The primary source of energy supply to support correct contractile muscle function differs between a fetus and an adult. In fetal life, ATP is primarily generated by glycolysis and lactate oxidation, whereas following birth, there is a shift towards a reliance on mitochondrial metabolism and fatty acid oxidation. This change in metabolic status is an adaptation to different fuel availability, oxygenation and growth patterns. In this study, we have employed 2‐photon excitation fluorescence microscopy to define the relationship between two critical metabolic cofactors nicotinamide adenine dinucleotide(P)H and flavin adenine dinucleotide, effectively utilizing a redox ratio to differentiate between the metabolic status in fetal (proliferative) and adult (quiescent/hypertrophic) hearts. Two‐photon imaging was also used to visually confirm the known increase in collagen deposition in the adult heart. The changes observed were consistent with a hypertrophic growth profile and greater availability of fatty acids in the adult heart, compared to the proliferative fetal heart. Two‐photon excitation fluorescence microscopy is therefore a convenient imaging technology that enables the monitoring of striated muscle architecture and the metabolic status of heart tissue. This imaging technology can potentially be employed to visualize cardiac and other muscle pathologies. Two‐photon excitation fluorescence microscopy is used to identify different metabolic profiles between a proliferative myocardium reliant on glycolysis as a source of ATP and a quiescent/hypertrophic myocardium with a greater reliance on oxidative phosphorylation.
doi_str_mv 10.1002/jbio.201700242
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1954386323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1954386323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4132-5670a62c5625586b769741519d46eb441e36fd4f181d2b84efe83286afad01143</originalsourceid><addsrcrecordid>eNqFkc1OGzEUha0KVCjttktkiQ2bBP-PZ9kiKKBIbKjUneUZXyeOJuNgzyiw4xF4xj5JHYWmUjes7r3Sd4-OzkHoKyVTSgi7WDYhThmhVTkE-4COqVZiQpTQB_ud_zpCn3JeEqIIl_wjOmI1kZWs9DGaz2wD3e-XV58AcFjZeejnOHqcwMUnnAc7jBnb3uE2dp2dQ48drGMOQ4g9zou42fIrGGwTu9BiF7yHBH0LGYceDwvAC7Bp-IwOve0yfHmbJ-jn9dXD5c1kdv_j9vLbbNIKytlEqopYxVqpmJRaNZWqK0ElrZ1Q0AhBgSvvhKeaOtZoAR40Z1pZbx2hVPATdL7TXaf4OEIezCrkFor1HuKYDa2l4Fpxxgt69h-6jGPqiztTAiWyZkqqQk13VJtizgm8WacSU3o2lJhtBWZbgdlXUB5O32THZgVuj__NvAD1DtiEDp7fkTN332_v_4n_AfRUkxM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010592656</pqid></control><display><type>article</type><title>Label‐free imaging of redox status and collagen deposition showing metabolic differences in the heart</title><source>Wiley Journals</source><creator>Morrison, Janna L. ; Sorvina, Alexandra ; Darby, Jack R.T. ; Bader, Christie A. ; Lock, Mitchell C. ; Seed, Mike ; Kuchel, Tim ; Plush, Sally E. ; Brooks, Douglas A.</creator><creatorcontrib>Morrison, Janna L. ; Sorvina, Alexandra ; Darby, Jack R.T. ; Bader, Christie A. ; Lock, Mitchell C. ; Seed, Mike ; Kuchel, Tim ; Plush, Sally E. ; Brooks, Douglas A.</creatorcontrib><description>The heart has high metabolic demand to maintain function. The primary source of energy supply to support correct contractile muscle function differs between a fetus and an adult. In fetal life, ATP is primarily generated by glycolysis and lactate oxidation, whereas following birth, there is a shift towards a reliance on mitochondrial metabolism and fatty acid oxidation. This change in metabolic status is an adaptation to different fuel availability, oxygenation and growth patterns. In this study, we have employed 2‐photon excitation fluorescence microscopy to define the relationship between two critical metabolic cofactors nicotinamide adenine dinucleotide(P)H and flavin adenine dinucleotide, effectively utilizing a redox ratio to differentiate between the metabolic status in fetal (proliferative) and adult (quiescent/hypertrophic) hearts. Two‐photon imaging was also used to visually confirm the known increase in collagen deposition in the adult heart. The changes observed were consistent with a hypertrophic growth profile and greater availability of fatty acids in the adult heart, compared to the proliferative fetal heart. Two‐photon excitation fluorescence microscopy is therefore a convenient imaging technology that enables the monitoring of striated muscle architecture and the metabolic status of heart tissue. This imaging technology can potentially be employed to visualize cardiac and other muscle pathologies. Two‐photon excitation fluorescence microscopy is used to identify different metabolic profiles between a proliferative myocardium reliant on glycolysis as a source of ATP and a quiescent/hypertrophic myocardium with a greater reliance on oxidative phosphorylation.</description><identifier>ISSN: 1864-063X</identifier><identifier>EISSN: 1864-0648</identifier><identifier>DOI: 10.1002/jbio.201700242</identifier><identifier>PMID: 29057578</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>2‐photon excitation fluorescence microscopy ; cardiomyocyte ; Cofactors ; Collagen ; Deposition ; Excitation ; Fatty acids ; Fetuses ; Flavin-adenine dinucleotide ; Fluorescence ; Fluorescence microscopy ; Glycolysis ; Growth patterns ; Heart ; Heart diseases ; Imaging ; Lactic acid ; metabolic activity ; Metabolism ; Microscopy ; Mitochondria ; Muscle contraction ; Muscles ; NAD ; Nicotinamide ; Nicotinamide adenine dinucleotide ; Oxidation ; Oxygenation ; proliferation ; quiescent/hypertrophic ; Skeletal muscle ; Technology</subject><ispartof>Journal of biophotonics, 2018-03, Vol.11 (3), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4132-5670a62c5625586b769741519d46eb441e36fd4f181d2b84efe83286afad01143</citedby><cites>FETCH-LOGICAL-c4132-5670a62c5625586b769741519d46eb441e36fd4f181d2b84efe83286afad01143</cites><orcidid>0000-0002-8602-8519 ; 0000-0002-9999-9154 ; 0000-0001-7114-3920 ; 0000-0002-5918-3038 ; 0000-0002-3594-1455</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbio.201700242$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbio.201700242$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29057578$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morrison, Janna L.</creatorcontrib><creatorcontrib>Sorvina, Alexandra</creatorcontrib><creatorcontrib>Darby, Jack R.T.</creatorcontrib><creatorcontrib>Bader, Christie A.</creatorcontrib><creatorcontrib>Lock, Mitchell C.</creatorcontrib><creatorcontrib>Seed, Mike</creatorcontrib><creatorcontrib>Kuchel, Tim</creatorcontrib><creatorcontrib>Plush, Sally E.</creatorcontrib><creatorcontrib>Brooks, Douglas A.</creatorcontrib><title>Label‐free imaging of redox status and collagen deposition showing metabolic differences in the heart</title><title>Journal of biophotonics</title><addtitle>J Biophotonics</addtitle><description>The heart has high metabolic demand to maintain function. The primary source of energy supply to support correct contractile muscle function differs between a fetus and an adult. In fetal life, ATP is primarily generated by glycolysis and lactate oxidation, whereas following birth, there is a shift towards a reliance on mitochondrial metabolism and fatty acid oxidation. This change in metabolic status is an adaptation to different fuel availability, oxygenation and growth patterns. In this study, we have employed 2‐photon excitation fluorescence microscopy to define the relationship between two critical metabolic cofactors nicotinamide adenine dinucleotide(P)H and flavin adenine dinucleotide, effectively utilizing a redox ratio to differentiate between the metabolic status in fetal (proliferative) and adult (quiescent/hypertrophic) hearts. Two‐photon imaging was also used to visually confirm the known increase in collagen deposition in the adult heart. The changes observed were consistent with a hypertrophic growth profile and greater availability of fatty acids in the adult heart, compared to the proliferative fetal heart. Two‐photon excitation fluorescence microscopy is therefore a convenient imaging technology that enables the monitoring of striated muscle architecture and the metabolic status of heart tissue. This imaging technology can potentially be employed to visualize cardiac and other muscle pathologies. Two‐photon excitation fluorescence microscopy is used to identify different metabolic profiles between a proliferative myocardium reliant on glycolysis as a source of ATP and a quiescent/hypertrophic myocardium with a greater reliance on oxidative phosphorylation.</description><subject>2‐photon excitation fluorescence microscopy</subject><subject>cardiomyocyte</subject><subject>Cofactors</subject><subject>Collagen</subject><subject>Deposition</subject><subject>Excitation</subject><subject>Fatty acids</subject><subject>Fetuses</subject><subject>Flavin-adenine dinucleotide</subject><subject>Fluorescence</subject><subject>Fluorescence microscopy</subject><subject>Glycolysis</subject><subject>Growth patterns</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Imaging</subject><subject>Lactic acid</subject><subject>metabolic activity</subject><subject>Metabolism</subject><subject>Microscopy</subject><subject>Mitochondria</subject><subject>Muscle contraction</subject><subject>Muscles</subject><subject>NAD</subject><subject>Nicotinamide</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Oxidation</subject><subject>Oxygenation</subject><subject>proliferation</subject><subject>quiescent/hypertrophic</subject><subject>Skeletal muscle</subject><subject>Technology</subject><issn>1864-063X</issn><issn>1864-0648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkc1OGzEUha0KVCjttktkiQ2bBP-PZ9kiKKBIbKjUneUZXyeOJuNgzyiw4xF4xj5JHYWmUjes7r3Sd4-OzkHoKyVTSgi7WDYhThmhVTkE-4COqVZiQpTQB_ud_zpCn3JeEqIIl_wjOmI1kZWs9DGaz2wD3e-XV58AcFjZeejnOHqcwMUnnAc7jBnb3uE2dp2dQ48drGMOQ4g9zou42fIrGGwTu9BiF7yHBH0LGYceDwvAC7Bp-IwOve0yfHmbJ-jn9dXD5c1kdv_j9vLbbNIKytlEqopYxVqpmJRaNZWqK0ElrZ1Q0AhBgSvvhKeaOtZoAR40Z1pZbx2hVPATdL7TXaf4OEIezCrkFor1HuKYDa2l4Fpxxgt69h-6jGPqiztTAiWyZkqqQk13VJtizgm8WacSU3o2lJhtBWZbgdlXUB5O32THZgVuj__NvAD1DtiEDp7fkTN332_v_4n_AfRUkxM</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Morrison, Janna L.</creator><creator>Sorvina, Alexandra</creator><creator>Darby, Jack R.T.</creator><creator>Bader, Christie A.</creator><creator>Lock, Mitchell C.</creator><creator>Seed, Mike</creator><creator>Kuchel, Tim</creator><creator>Plush, Sally E.</creator><creator>Brooks, Douglas A.</creator><general>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>K9.</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8602-8519</orcidid><orcidid>https://orcid.org/0000-0002-9999-9154</orcidid><orcidid>https://orcid.org/0000-0001-7114-3920</orcidid><orcidid>https://orcid.org/0000-0002-5918-3038</orcidid><orcidid>https://orcid.org/0000-0002-3594-1455</orcidid></search><sort><creationdate>201803</creationdate><title>Label‐free imaging of redox status and collagen deposition showing metabolic differences in the heart</title><author>Morrison, Janna L. ; Sorvina, Alexandra ; Darby, Jack R.T. ; Bader, Christie A. ; Lock, Mitchell C. ; Seed, Mike ; Kuchel, Tim ; Plush, Sally E. ; Brooks, Douglas A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4132-5670a62c5625586b769741519d46eb441e36fd4f181d2b84efe83286afad01143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>2‐photon excitation fluorescence microscopy</topic><topic>cardiomyocyte</topic><topic>Cofactors</topic><topic>Collagen</topic><topic>Deposition</topic><topic>Excitation</topic><topic>Fatty acids</topic><topic>Fetuses</topic><topic>Flavin-adenine dinucleotide</topic><topic>Fluorescence</topic><topic>Fluorescence microscopy</topic><topic>Glycolysis</topic><topic>Growth patterns</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Imaging</topic><topic>Lactic acid</topic><topic>metabolic activity</topic><topic>Metabolism</topic><topic>Microscopy</topic><topic>Mitochondria</topic><topic>Muscle contraction</topic><topic>Muscles</topic><topic>NAD</topic><topic>Nicotinamide</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Oxidation</topic><topic>Oxygenation</topic><topic>proliferation</topic><topic>quiescent/hypertrophic</topic><topic>Skeletal muscle</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morrison, Janna L.</creatorcontrib><creatorcontrib>Sorvina, Alexandra</creatorcontrib><creatorcontrib>Darby, Jack R.T.</creatorcontrib><creatorcontrib>Bader, Christie A.</creatorcontrib><creatorcontrib>Lock, Mitchell C.</creatorcontrib><creatorcontrib>Seed, Mike</creatorcontrib><creatorcontrib>Kuchel, Tim</creatorcontrib><creatorcontrib>Plush, Sally E.</creatorcontrib><creatorcontrib>Brooks, Douglas A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biophotonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morrison, Janna L.</au><au>Sorvina, Alexandra</au><au>Darby, Jack R.T.</au><au>Bader, Christie A.</au><au>Lock, Mitchell C.</au><au>Seed, Mike</au><au>Kuchel, Tim</au><au>Plush, Sally E.</au><au>Brooks, Douglas A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Label‐free imaging of redox status and collagen deposition showing metabolic differences in the heart</atitle><jtitle>Journal of biophotonics</jtitle><addtitle>J Biophotonics</addtitle><date>2018-03</date><risdate>2018</risdate><volume>11</volume><issue>3</issue><epage>n/a</epage><issn>1864-063X</issn><eissn>1864-0648</eissn><abstract>The heart has high metabolic demand to maintain function. The primary source of energy supply to support correct contractile muscle function differs between a fetus and an adult. In fetal life, ATP is primarily generated by glycolysis and lactate oxidation, whereas following birth, there is a shift towards a reliance on mitochondrial metabolism and fatty acid oxidation. This change in metabolic status is an adaptation to different fuel availability, oxygenation and growth patterns. In this study, we have employed 2‐photon excitation fluorescence microscopy to define the relationship between two critical metabolic cofactors nicotinamide adenine dinucleotide(P)H and flavin adenine dinucleotide, effectively utilizing a redox ratio to differentiate between the metabolic status in fetal (proliferative) and adult (quiescent/hypertrophic) hearts. Two‐photon imaging was also used to visually confirm the known increase in collagen deposition in the adult heart. The changes observed were consistent with a hypertrophic growth profile and greater availability of fatty acids in the adult heart, compared to the proliferative fetal heart. Two‐photon excitation fluorescence microscopy is therefore a convenient imaging technology that enables the monitoring of striated muscle architecture and the metabolic status of heart tissue. This imaging technology can potentially be employed to visualize cardiac and other muscle pathologies. Two‐photon excitation fluorescence microscopy is used to identify different metabolic profiles between a proliferative myocardium reliant on glycolysis as a source of ATP and a quiescent/hypertrophic myocardium with a greater reliance on oxidative phosphorylation.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</pub><pmid>29057578</pmid><doi>10.1002/jbio.201700242</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8602-8519</orcidid><orcidid>https://orcid.org/0000-0002-9999-9154</orcidid><orcidid>https://orcid.org/0000-0001-7114-3920</orcidid><orcidid>https://orcid.org/0000-0002-5918-3038</orcidid><orcidid>https://orcid.org/0000-0002-3594-1455</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1864-063X
ispartof Journal of biophotonics, 2018-03, Vol.11 (3), p.n/a
issn 1864-063X
1864-0648
language eng
recordid cdi_proquest_miscellaneous_1954386323
source Wiley Journals
subjects 2‐photon excitation fluorescence microscopy
cardiomyocyte
Cofactors
Collagen
Deposition
Excitation
Fatty acids
Fetuses
Flavin-adenine dinucleotide
Fluorescence
Fluorescence microscopy
Glycolysis
Growth patterns
Heart
Heart diseases
Imaging
Lactic acid
metabolic activity
Metabolism
Microscopy
Mitochondria
Muscle contraction
Muscles
NAD
Nicotinamide
Nicotinamide adenine dinucleotide
Oxidation
Oxygenation
proliferation
quiescent/hypertrophic
Skeletal muscle
Technology
title Label‐free imaging of redox status and collagen deposition showing metabolic differences in the heart
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A01%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Label%E2%80%90free%20imaging%20of%20redox%20status%20and%20collagen%20deposition%20showing%20metabolic%20differences%20in%20the%20heart&rft.jtitle=Journal%20of%20biophotonics&rft.au=Morrison,%20Janna%20L.&rft.date=2018-03&rft.volume=11&rft.issue=3&rft.epage=n/a&rft.issn=1864-063X&rft.eissn=1864-0648&rft_id=info:doi/10.1002/jbio.201700242&rft_dat=%3Cproquest_cross%3E1954386323%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010592656&rft_id=info:pmid/29057578&rfr_iscdi=true