Fabrication of Novel Electrochemical Biosensor Based on Graphene Nanohybrid to Detect H2O2 Released from Living Cells with Ultrahigh Performance
In this paper, a new class of metal-free nanocarbon catalystnitrogen (N) and sulfur (S) codoped graphene quantum dot/graphene (NS-GQD/G) hybrid nanosheetswas designed and synthesized for sensitive detection of hydrogen peroxide (H2O2). NS-GQD/G was prepared through two steps. First, graphene quant...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2017-11, Vol.9 (43), p.37991-37999 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37999 |
---|---|
container_issue | 43 |
container_start_page | 37991 |
container_title | ACS applied materials & interfaces |
container_volume | 9 |
creator | Zhang, Tingting Gu, Yue Li, Cong Yan, Xiaoyi Lu, Nannan Liu, He Zhang, Zhiquan Zhang, Hong |
description | In this paper, a new class of metal-free nanocarbon catalystnitrogen (N) and sulfur (S) codoped graphene quantum dot/graphene (NS-GQD/G) hybrid nanosheetswas designed and synthesized for sensitive detection of hydrogen peroxide (H2O2). NS-GQD/G was prepared through two steps. First, graphene quantum dots (GQDs) were self-assembled on graphene nanoplatelets via hydrothermal treatment to constitute hybrid nanosheets, followed by a thermal annealing procedure using the hybrid nanosheets and thiourea to form the NS-GQD/G hybrid nanosheets. This hybrid material possessed high specific surface area, numerous doping sites and edges, and high electrical conductivity, which leads to ultrahigh performance toward H2O2 electrocatalysis reduction. Under the optimal experimental conditions, the proposed H2O2 sensor displayed an extended linear response in the range from 0.4 μM to 33 mM with a low detection limit of 26 nM (S/N = 3). In addition to desirable selectivity, ideal reproducibility, and long-time stability, this H2O2 sensor exhibited desirable performance in detecting H2O2 in the human serum samples and that released from Raw 264.7 cells. Therefore, the novel NS-GQD/G nanocomposite was a promising metal-free material in the fields of electrochemical sensing and bioanalysis. |
doi_str_mv | 10.1021/acsami.7b14029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1954063705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1954063705</sourcerecordid><originalsourceid>FETCH-LOGICAL-a223t-cc00f40cbee70f1f6ecdcddb63e73e59b7d654645de8d39fdb8814c5831262313</originalsourceid><addsrcrecordid>eNo9kMtKAzEUhgdRsFa3rrMUYWpuc1tq7UUorYhdD5nkTCdlJqnJtOJb-MhGW1ydA-c7Pz9fFN0SPCKYkgchvej0KKsIx7Q4iwak4DzOaULP_3fOL6Mr77cYp4ziZBB9T0XltBS9tgbZGi3tAVo0aUH2zsoGunBr0ZO2Hoy3Dj0JDwoFdubErgEDaCmMbb5CiEK9Rc_Qh1c0pyuK3qCFP7x2tkMLfdBmg8bQth596r5B67Z3otGbBr2Cq63rhJFwHV3UovVwc5rDaD2dvI_n8WI1exk_LmJBKetjKTGuOZYVQIZrUqcglVSqShlkDJKiylSa8JQnCnLFilpVeU64THJGaEoZYcPo7pi7c_ZjD74vO-1lKCcM2L0vSZHwICnDSUDvj2gwXG7t3plQrCS4_NVeHrWXJ-3sBxLuePA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1954063705</pqid></control><display><type>article</type><title>Fabrication of Novel Electrochemical Biosensor Based on Graphene Nanohybrid to Detect H2O2 Released from Living Cells with Ultrahigh Performance</title><source>ACS Publications</source><creator>Zhang, Tingting ; Gu, Yue ; Li, Cong ; Yan, Xiaoyi ; Lu, Nannan ; Liu, He ; Zhang, Zhiquan ; Zhang, Hong</creator><creatorcontrib>Zhang, Tingting ; Gu, Yue ; Li, Cong ; Yan, Xiaoyi ; Lu, Nannan ; Liu, He ; Zhang, Zhiquan ; Zhang, Hong</creatorcontrib><description>In this paper, a new class of metal-free nanocarbon catalystnitrogen (N) and sulfur (S) codoped graphene quantum dot/graphene (NS-GQD/G) hybrid nanosheetswas designed and synthesized for sensitive detection of hydrogen peroxide (H2O2). NS-GQD/G was prepared through two steps. First, graphene quantum dots (GQDs) were self-assembled on graphene nanoplatelets via hydrothermal treatment to constitute hybrid nanosheets, followed by a thermal annealing procedure using the hybrid nanosheets and thiourea to form the NS-GQD/G hybrid nanosheets. This hybrid material possessed high specific surface area, numerous doping sites and edges, and high electrical conductivity, which leads to ultrahigh performance toward H2O2 electrocatalysis reduction. Under the optimal experimental conditions, the proposed H2O2 sensor displayed an extended linear response in the range from 0.4 μM to 33 mM with a low detection limit of 26 nM (S/N = 3). In addition to desirable selectivity, ideal reproducibility, and long-time stability, this H2O2 sensor exhibited desirable performance in detecting H2O2 in the human serum samples and that released from Raw 264.7 cells. Therefore, the novel NS-GQD/G nanocomposite was a promising metal-free material in the fields of electrochemical sensing and bioanalysis.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.7b14029</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2017-11, Vol.9 (43), p.37991-37999</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2764-321X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.7b14029$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.7b14029$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Zhang, Tingting</creatorcontrib><creatorcontrib>Gu, Yue</creatorcontrib><creatorcontrib>Li, Cong</creatorcontrib><creatorcontrib>Yan, Xiaoyi</creatorcontrib><creatorcontrib>Lu, Nannan</creatorcontrib><creatorcontrib>Liu, He</creatorcontrib><creatorcontrib>Zhang, Zhiquan</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><title>Fabrication of Novel Electrochemical Biosensor Based on Graphene Nanohybrid to Detect H2O2 Released from Living Cells with Ultrahigh Performance</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>In this paper, a new class of metal-free nanocarbon catalystnitrogen (N) and sulfur (S) codoped graphene quantum dot/graphene (NS-GQD/G) hybrid nanosheetswas designed and synthesized for sensitive detection of hydrogen peroxide (H2O2). NS-GQD/G was prepared through two steps. First, graphene quantum dots (GQDs) were self-assembled on graphene nanoplatelets via hydrothermal treatment to constitute hybrid nanosheets, followed by a thermal annealing procedure using the hybrid nanosheets and thiourea to form the NS-GQD/G hybrid nanosheets. This hybrid material possessed high specific surface area, numerous doping sites and edges, and high electrical conductivity, which leads to ultrahigh performance toward H2O2 electrocatalysis reduction. Under the optimal experimental conditions, the proposed H2O2 sensor displayed an extended linear response in the range from 0.4 μM to 33 mM with a low detection limit of 26 nM (S/N = 3). In addition to desirable selectivity, ideal reproducibility, and long-time stability, this H2O2 sensor exhibited desirable performance in detecting H2O2 in the human serum samples and that released from Raw 264.7 cells. Therefore, the novel NS-GQD/G nanocomposite was a promising metal-free material in the fields of electrochemical sensing and bioanalysis.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKAzEUhgdRsFa3rrMUYWpuc1tq7UUorYhdD5nkTCdlJqnJtOJb-MhGW1ydA-c7Pz9fFN0SPCKYkgchvej0KKsIx7Q4iwak4DzOaULP_3fOL6Mr77cYp4ziZBB9T0XltBS9tgbZGi3tAVo0aUH2zsoGunBr0ZO2Hoy3Dj0JDwoFdubErgEDaCmMbb5CiEK9Rc_Qh1c0pyuK3qCFP7x2tkMLfdBmg8bQth596r5B67Z3otGbBr2Cq63rhJFwHV3UovVwc5rDaD2dvI_n8WI1exk_LmJBKetjKTGuOZYVQIZrUqcglVSqShlkDJKiylSa8JQnCnLFilpVeU64THJGaEoZYcPo7pi7c_ZjD74vO-1lKCcM2L0vSZHwICnDSUDvj2gwXG7t3plQrCS4_NVeHrWXJ-3sBxLuePA</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Zhang, Tingting</creator><creator>Gu, Yue</creator><creator>Li, Cong</creator><creator>Yan, Xiaoyi</creator><creator>Lu, Nannan</creator><creator>Liu, He</creator><creator>Zhang, Zhiquan</creator><creator>Zhang, Hong</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2764-321X</orcidid></search><sort><creationdate>20171101</creationdate><title>Fabrication of Novel Electrochemical Biosensor Based on Graphene Nanohybrid to Detect H2O2 Released from Living Cells with Ultrahigh Performance</title><author>Zhang, Tingting ; Gu, Yue ; Li, Cong ; Yan, Xiaoyi ; Lu, Nannan ; Liu, He ; Zhang, Zhiquan ; Zhang, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a223t-cc00f40cbee70f1f6ecdcddb63e73e59b7d654645de8d39fdb8814c5831262313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Tingting</creatorcontrib><creatorcontrib>Gu, Yue</creatorcontrib><creatorcontrib>Li, Cong</creatorcontrib><creatorcontrib>Yan, Xiaoyi</creatorcontrib><creatorcontrib>Lu, Nannan</creatorcontrib><creatorcontrib>Liu, He</creatorcontrib><creatorcontrib>Zhang, Zhiquan</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Tingting</au><au>Gu, Yue</au><au>Li, Cong</au><au>Yan, Xiaoyi</au><au>Lu, Nannan</au><au>Liu, He</au><au>Zhang, Zhiquan</au><au>Zhang, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of Novel Electrochemical Biosensor Based on Graphene Nanohybrid to Detect H2O2 Released from Living Cells with Ultrahigh Performance</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>9</volume><issue>43</issue><spage>37991</spage><epage>37999</epage><pages>37991-37999</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>In this paper, a new class of metal-free nanocarbon catalystnitrogen (N) and sulfur (S) codoped graphene quantum dot/graphene (NS-GQD/G) hybrid nanosheetswas designed and synthesized for sensitive detection of hydrogen peroxide (H2O2). NS-GQD/G was prepared through two steps. First, graphene quantum dots (GQDs) were self-assembled on graphene nanoplatelets via hydrothermal treatment to constitute hybrid nanosheets, followed by a thermal annealing procedure using the hybrid nanosheets and thiourea to form the NS-GQD/G hybrid nanosheets. This hybrid material possessed high specific surface area, numerous doping sites and edges, and high electrical conductivity, which leads to ultrahigh performance toward H2O2 electrocatalysis reduction. Under the optimal experimental conditions, the proposed H2O2 sensor displayed an extended linear response in the range from 0.4 μM to 33 mM with a low detection limit of 26 nM (S/N = 3). In addition to desirable selectivity, ideal reproducibility, and long-time stability, this H2O2 sensor exhibited desirable performance in detecting H2O2 in the human serum samples and that released from Raw 264.7 cells. Therefore, the novel NS-GQD/G nanocomposite was a promising metal-free material in the fields of electrochemical sensing and bioanalysis.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.7b14029</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2764-321X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2017-11, Vol.9 (43), p.37991-37999 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_1954063705 |
source | ACS Publications |
title | Fabrication of Novel Electrochemical Biosensor Based on Graphene Nanohybrid to Detect H2O2 Released from Living Cells with Ultrahigh Performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A46%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20Novel%20Electrochemical%20Biosensor%20Based%20on%20Graphene%20Nanohybrid%20to%20Detect%20H2O2%20Released%20from%20Living%20Cells%20with%20Ultrahigh%20Performance&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zhang,%20Tingting&rft.date=2017-11-01&rft.volume=9&rft.issue=43&rft.spage=37991&rft.epage=37999&rft.pages=37991-37999&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.7b14029&rft_dat=%3Cproquest_acs_j%3E1954063705%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1954063705&rft_id=info:pmid/&rfr_iscdi=true |