Fabrication of Novel Electrochemical Biosensor Based on Graphene Nanohybrid to Detect H2O2 Released from Living Cells with Ultrahigh Performance

In this paper, a new class of metal-free nanocarbon catalystnitrogen (N) and sulfur (S) codoped graphene quantum dot/graphene (NS-GQD/G) hybrid nanosheetswas designed and synthesized for sensitive detection of hydrogen peroxide (H2O2). NS-GQD/G was prepared through two steps. First, graphene quant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2017-11, Vol.9 (43), p.37991-37999
Hauptverfasser: Zhang, Tingting, Gu, Yue, Li, Cong, Yan, Xiaoyi, Lu, Nannan, Liu, He, Zhang, Zhiquan, Zhang, Hong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37999
container_issue 43
container_start_page 37991
container_title ACS applied materials & interfaces
container_volume 9
creator Zhang, Tingting
Gu, Yue
Li, Cong
Yan, Xiaoyi
Lu, Nannan
Liu, He
Zhang, Zhiquan
Zhang, Hong
description In this paper, a new class of metal-free nanocarbon catalystnitrogen (N) and sulfur (S) codoped graphene quantum dot/graphene (NS-GQD/G) hybrid nanosheetswas designed and synthesized for sensitive detection of hydrogen peroxide (H2O2). NS-GQD/G was prepared through two steps. First, graphene quantum dots (GQDs) were self-assembled on graphene nanoplatelets via hydrothermal treatment to constitute hybrid nanosheets, followed by a thermal annealing procedure using the hybrid nanosheets and thiourea to form the NS-GQD/G hybrid nanosheets. This hybrid material possessed high specific surface area, numerous doping sites and edges, and high electrical conductivity, which leads to ultrahigh performance toward H2O2 electrocatalysis reduction. Under the optimal experimental conditions, the proposed H2O2 sensor displayed an extended linear response in the range from 0.4 μM to 33 mM with a low detection limit of 26 nM (S/N = 3). In addition to desirable selectivity, ideal reproducibility, and long-time stability, this H2O2 sensor exhibited desirable performance in detecting H2O2 in the human serum samples and that released from Raw 264.7 cells. Therefore, the novel NS-GQD/G nanocomposite was a promising metal-free material in the fields of electrochemical sensing and bioanalysis.
doi_str_mv 10.1021/acsami.7b14029
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1954063705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1954063705</sourcerecordid><originalsourceid>FETCH-LOGICAL-a223t-cc00f40cbee70f1f6ecdcddb63e73e59b7d654645de8d39fdb8814c5831262313</originalsourceid><addsrcrecordid>eNo9kMtKAzEUhgdRsFa3rrMUYWpuc1tq7UUorYhdD5nkTCdlJqnJtOJb-MhGW1ydA-c7Pz9fFN0SPCKYkgchvej0KKsIx7Q4iwak4DzOaULP_3fOL6Mr77cYp4ziZBB9T0XltBS9tgbZGi3tAVo0aUH2zsoGunBr0ZO2Hoy3Dj0JDwoFdubErgEDaCmMbb5CiEK9Rc_Qh1c0pyuK3qCFP7x2tkMLfdBmg8bQth596r5B67Z3otGbBr2Cq63rhJFwHV3UovVwc5rDaD2dvI_n8WI1exk_LmJBKetjKTGuOZYVQIZrUqcglVSqShlkDJKiylSa8JQnCnLFilpVeU64THJGaEoZYcPo7pi7c_ZjD74vO-1lKCcM2L0vSZHwICnDSUDvj2gwXG7t3plQrCS4_NVeHrWXJ-3sBxLuePA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1954063705</pqid></control><display><type>article</type><title>Fabrication of Novel Electrochemical Biosensor Based on Graphene Nanohybrid to Detect H2O2 Released from Living Cells with Ultrahigh Performance</title><source>ACS Publications</source><creator>Zhang, Tingting ; Gu, Yue ; Li, Cong ; Yan, Xiaoyi ; Lu, Nannan ; Liu, He ; Zhang, Zhiquan ; Zhang, Hong</creator><creatorcontrib>Zhang, Tingting ; Gu, Yue ; Li, Cong ; Yan, Xiaoyi ; Lu, Nannan ; Liu, He ; Zhang, Zhiquan ; Zhang, Hong</creatorcontrib><description>In this paper, a new class of metal-free nanocarbon catalystnitrogen (N) and sulfur (S) codoped graphene quantum dot/graphene (NS-GQD/G) hybrid nanosheetswas designed and synthesized for sensitive detection of hydrogen peroxide (H2O2). NS-GQD/G was prepared through two steps. First, graphene quantum dots (GQDs) were self-assembled on graphene nanoplatelets via hydrothermal treatment to constitute hybrid nanosheets, followed by a thermal annealing procedure using the hybrid nanosheets and thiourea to form the NS-GQD/G hybrid nanosheets. This hybrid material possessed high specific surface area, numerous doping sites and edges, and high electrical conductivity, which leads to ultrahigh performance toward H2O2 electrocatalysis reduction. Under the optimal experimental conditions, the proposed H2O2 sensor displayed an extended linear response in the range from 0.4 μM to 33 mM with a low detection limit of 26 nM (S/N = 3). In addition to desirable selectivity, ideal reproducibility, and long-time stability, this H2O2 sensor exhibited desirable performance in detecting H2O2 in the human serum samples and that released from Raw 264.7 cells. Therefore, the novel NS-GQD/G nanocomposite was a promising metal-free material in the fields of electrochemical sensing and bioanalysis.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.7b14029</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2017-11, Vol.9 (43), p.37991-37999</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2764-321X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.7b14029$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.7b14029$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Zhang, Tingting</creatorcontrib><creatorcontrib>Gu, Yue</creatorcontrib><creatorcontrib>Li, Cong</creatorcontrib><creatorcontrib>Yan, Xiaoyi</creatorcontrib><creatorcontrib>Lu, Nannan</creatorcontrib><creatorcontrib>Liu, He</creatorcontrib><creatorcontrib>Zhang, Zhiquan</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><title>Fabrication of Novel Electrochemical Biosensor Based on Graphene Nanohybrid to Detect H2O2 Released from Living Cells with Ultrahigh Performance</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>In this paper, a new class of metal-free nanocarbon catalystnitrogen (N) and sulfur (S) codoped graphene quantum dot/graphene (NS-GQD/G) hybrid nanosheetswas designed and synthesized for sensitive detection of hydrogen peroxide (H2O2). NS-GQD/G was prepared through two steps. First, graphene quantum dots (GQDs) were self-assembled on graphene nanoplatelets via hydrothermal treatment to constitute hybrid nanosheets, followed by a thermal annealing procedure using the hybrid nanosheets and thiourea to form the NS-GQD/G hybrid nanosheets. This hybrid material possessed high specific surface area, numerous doping sites and edges, and high electrical conductivity, which leads to ultrahigh performance toward H2O2 electrocatalysis reduction. Under the optimal experimental conditions, the proposed H2O2 sensor displayed an extended linear response in the range from 0.4 μM to 33 mM with a low detection limit of 26 nM (S/N = 3). In addition to desirable selectivity, ideal reproducibility, and long-time stability, this H2O2 sensor exhibited desirable performance in detecting H2O2 in the human serum samples and that released from Raw 264.7 cells. Therefore, the novel NS-GQD/G nanocomposite was a promising metal-free material in the fields of electrochemical sensing and bioanalysis.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKAzEUhgdRsFa3rrMUYWpuc1tq7UUorYhdD5nkTCdlJqnJtOJb-MhGW1ydA-c7Pz9fFN0SPCKYkgchvej0KKsIx7Q4iwak4DzOaULP_3fOL6Mr77cYp4ziZBB9T0XltBS9tgbZGi3tAVo0aUH2zsoGunBr0ZO2Hoy3Dj0JDwoFdubErgEDaCmMbb5CiEK9Rc_Qh1c0pyuK3qCFP7x2tkMLfdBmg8bQth596r5B67Z3otGbBr2Cq63rhJFwHV3UovVwc5rDaD2dvI_n8WI1exk_LmJBKetjKTGuOZYVQIZrUqcglVSqShlkDJKiylSa8JQnCnLFilpVeU64THJGaEoZYcPo7pi7c_ZjD74vO-1lKCcM2L0vSZHwICnDSUDvj2gwXG7t3plQrCS4_NVeHrWXJ-3sBxLuePA</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Zhang, Tingting</creator><creator>Gu, Yue</creator><creator>Li, Cong</creator><creator>Yan, Xiaoyi</creator><creator>Lu, Nannan</creator><creator>Liu, He</creator><creator>Zhang, Zhiquan</creator><creator>Zhang, Hong</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2764-321X</orcidid></search><sort><creationdate>20171101</creationdate><title>Fabrication of Novel Electrochemical Biosensor Based on Graphene Nanohybrid to Detect H2O2 Released from Living Cells with Ultrahigh Performance</title><author>Zhang, Tingting ; Gu, Yue ; Li, Cong ; Yan, Xiaoyi ; Lu, Nannan ; Liu, He ; Zhang, Zhiquan ; Zhang, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a223t-cc00f40cbee70f1f6ecdcddb63e73e59b7d654645de8d39fdb8814c5831262313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Tingting</creatorcontrib><creatorcontrib>Gu, Yue</creatorcontrib><creatorcontrib>Li, Cong</creatorcontrib><creatorcontrib>Yan, Xiaoyi</creatorcontrib><creatorcontrib>Lu, Nannan</creatorcontrib><creatorcontrib>Liu, He</creatorcontrib><creatorcontrib>Zhang, Zhiquan</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Tingting</au><au>Gu, Yue</au><au>Li, Cong</au><au>Yan, Xiaoyi</au><au>Lu, Nannan</au><au>Liu, He</au><au>Zhang, Zhiquan</au><au>Zhang, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of Novel Electrochemical Biosensor Based on Graphene Nanohybrid to Detect H2O2 Released from Living Cells with Ultrahigh Performance</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>9</volume><issue>43</issue><spage>37991</spage><epage>37999</epage><pages>37991-37999</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>In this paper, a new class of metal-free nanocarbon catalystnitrogen (N) and sulfur (S) codoped graphene quantum dot/graphene (NS-GQD/G) hybrid nanosheetswas designed and synthesized for sensitive detection of hydrogen peroxide (H2O2). NS-GQD/G was prepared through two steps. First, graphene quantum dots (GQDs) were self-assembled on graphene nanoplatelets via hydrothermal treatment to constitute hybrid nanosheets, followed by a thermal annealing procedure using the hybrid nanosheets and thiourea to form the NS-GQD/G hybrid nanosheets. This hybrid material possessed high specific surface area, numerous doping sites and edges, and high electrical conductivity, which leads to ultrahigh performance toward H2O2 electrocatalysis reduction. Under the optimal experimental conditions, the proposed H2O2 sensor displayed an extended linear response in the range from 0.4 μM to 33 mM with a low detection limit of 26 nM (S/N = 3). In addition to desirable selectivity, ideal reproducibility, and long-time stability, this H2O2 sensor exhibited desirable performance in detecting H2O2 in the human serum samples and that released from Raw 264.7 cells. Therefore, the novel NS-GQD/G nanocomposite was a promising metal-free material in the fields of electrochemical sensing and bioanalysis.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.7b14029</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2764-321X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2017-11, Vol.9 (43), p.37991-37999
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1954063705
source ACS Publications
title Fabrication of Novel Electrochemical Biosensor Based on Graphene Nanohybrid to Detect H2O2 Released from Living Cells with Ultrahigh Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A46%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20Novel%20Electrochemical%20Biosensor%20Based%20on%20Graphene%20Nanohybrid%20to%20Detect%20H2O2%20Released%20from%20Living%20Cells%20with%20Ultrahigh%20Performance&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zhang,%20Tingting&rft.date=2017-11-01&rft.volume=9&rft.issue=43&rft.spage=37991&rft.epage=37999&rft.pages=37991-37999&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.7b14029&rft_dat=%3Cproquest_acs_j%3E1954063705%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1954063705&rft_id=info:pmid/&rfr_iscdi=true