Electromagnetic pulse scattering by a spacecraft nearing light speed

Humans will launch spacecraft that travel at an appreciable fraction of the speed of light. Spacecraft traffic will be tracked by radar. Scattering of pulsed electromagnetic fields by an object in uniform translational motion at relativistic speed may be computed using the frame-hopping technique. P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2017-08, Vol.56 (22), p.6206-6213
Hauptverfasser: Garner, Timothy J, Lakhtakia, Akhlesh, Breakall, James K, Bohren, Craig F
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6213
container_issue 22
container_start_page 6206
container_title Applied optics (2004)
container_volume 56
creator Garner, Timothy J
Lakhtakia, Akhlesh
Breakall, James K
Bohren, Craig F
description Humans will launch spacecraft that travel at an appreciable fraction of the speed of light. Spacecraft traffic will be tracked by radar. Scattering of pulsed electromagnetic fields by an object in uniform translational motion at relativistic speed may be computed using the frame-hopping technique. Pulse scattering depends strongly on the velocity, shape, orientation, and composition of the object. The peak magnitude of the backscattered signal varies by many orders of magnitude, depending on whether the object is advancing toward or receding from the source of the interrogating signal. The peak magnitude of the backscattered signal goes to zero as the object recedes from the observer at a speed very closely approaching light speed, rendering the object invisible to the observer. The energy scattered by an object in motion may increase or decrease relative to the energy scattered by the same object at rest. Both the magnitude and sign of the change depend on the velocity of the object, as well as on its shape, orientation, and composition. In some cases, the change in total scattered energy is greatest when the object is moving transversely to the propagation direction of the interrogating signal, even though the Doppler effect is strongest when the motion is parallel or antiparallel to the propagation direction.
doi_str_mv 10.1364/AO.56.006206
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1953299923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1953299923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d6df27b416f2065b471cea88585de8d2397661a3dd40b5e3a1ef035fa6d4b19d3</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EoqVw44xy5ECCH7ETH6tSHlKlXkDiZjn2ugTlhe0c-u8JtHDa1c63o9EgdE1wRpjI75fbjIsMY0GxOEFzSjhPGRH8FM2nVaaElu8zdBHCJ8aM57I4RzMqcV6UhM_Rw7oBE33f6l0HsTbJMDYBkmB0jODrbpdU-0QnYdAGjNcuJh3o33tT7z7iJADYS3Tm9PR2dZwL9Pa4fl09p5vt08tquUkNlSSmVlhHiyonwk1ZeZUXxIAuS15yC6WlTBZCEM2szXHFgWkCborstLB5RaRlC3R78B18_zVCiKqtg4Gm0R30Y1BEckallJRN6N0BNb4PwYNTg69b7feKYPXTm1puFRfq0NuE3xydx6oF-w__FcW-AUvQaBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1953299923</pqid></control><display><type>article</type><title>Electromagnetic pulse scattering by a spacecraft nearing light speed</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Garner, Timothy J ; Lakhtakia, Akhlesh ; Breakall, James K ; Bohren, Craig F</creator><creatorcontrib>Garner, Timothy J ; Lakhtakia, Akhlesh ; Breakall, James K ; Bohren, Craig F</creatorcontrib><description>Humans will launch spacecraft that travel at an appreciable fraction of the speed of light. Spacecraft traffic will be tracked by radar. Scattering of pulsed electromagnetic fields by an object in uniform translational motion at relativistic speed may be computed using the frame-hopping technique. Pulse scattering depends strongly on the velocity, shape, orientation, and composition of the object. The peak magnitude of the backscattered signal varies by many orders of magnitude, depending on whether the object is advancing toward or receding from the source of the interrogating signal. The peak magnitude of the backscattered signal goes to zero as the object recedes from the observer at a speed very closely approaching light speed, rendering the object invisible to the observer. The energy scattered by an object in motion may increase or decrease relative to the energy scattered by the same object at rest. Both the magnitude and sign of the change depend on the velocity of the object, as well as on its shape, orientation, and composition. In some cases, the change in total scattered energy is greatest when the object is moving transversely to the propagation direction of the interrogating signal, even though the Doppler effect is strongest when the motion is parallel or antiparallel to the propagation direction.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.56.006206</identifier><identifier>PMID: 29047815</identifier><language>eng</language><publisher>United States</publisher><ispartof>Applied optics (2004), 2017-08, Vol.56 (22), p.6206-6213</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-d6df27b416f2065b471cea88585de8d2397661a3dd40b5e3a1ef035fa6d4b19d3</citedby><cites>FETCH-LOGICAL-c291t-d6df27b416f2065b471cea88585de8d2397661a3dd40b5e3a1ef035fa6d4b19d3</cites><orcidid>0000-0002-2179-2313</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3245,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29047815$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garner, Timothy J</creatorcontrib><creatorcontrib>Lakhtakia, Akhlesh</creatorcontrib><creatorcontrib>Breakall, James K</creatorcontrib><creatorcontrib>Bohren, Craig F</creatorcontrib><title>Electromagnetic pulse scattering by a spacecraft nearing light speed</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>Humans will launch spacecraft that travel at an appreciable fraction of the speed of light. Spacecraft traffic will be tracked by radar. Scattering of pulsed electromagnetic fields by an object in uniform translational motion at relativistic speed may be computed using the frame-hopping technique. Pulse scattering depends strongly on the velocity, shape, orientation, and composition of the object. The peak magnitude of the backscattered signal varies by many orders of magnitude, depending on whether the object is advancing toward or receding from the source of the interrogating signal. The peak magnitude of the backscattered signal goes to zero as the object recedes from the observer at a speed very closely approaching light speed, rendering the object invisible to the observer. The energy scattered by an object in motion may increase or decrease relative to the energy scattered by the same object at rest. Both the magnitude and sign of the change depend on the velocity of the object, as well as on its shape, orientation, and composition. In some cases, the change in total scattered energy is greatest when the object is moving transversely to the propagation direction of the interrogating signal, even though the Doppler effect is strongest when the motion is parallel or antiparallel to the propagation direction.</description><issn>1559-128X</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwzAQhC0EoqVw44xy5ECCH7ETH6tSHlKlXkDiZjn2ugTlhe0c-u8JtHDa1c63o9EgdE1wRpjI75fbjIsMY0GxOEFzSjhPGRH8FM2nVaaElu8zdBHCJ8aM57I4RzMqcV6UhM_Rw7oBE33f6l0HsTbJMDYBkmB0jODrbpdU-0QnYdAGjNcuJh3o33tT7z7iJADYS3Tm9PR2dZwL9Pa4fl09p5vt08tquUkNlSSmVlhHiyonwk1ZeZUXxIAuS15yC6WlTBZCEM2szXHFgWkCborstLB5RaRlC3R78B18_zVCiKqtg4Gm0R30Y1BEckallJRN6N0BNb4PwYNTg69b7feKYPXTm1puFRfq0NuE3xydx6oF-w__FcW-AUvQaBw</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Garner, Timothy J</creator><creator>Lakhtakia, Akhlesh</creator><creator>Breakall, James K</creator><creator>Bohren, Craig F</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2179-2313</orcidid></search><sort><creationdate>20170801</creationdate><title>Electromagnetic pulse scattering by a spacecraft nearing light speed</title><author>Garner, Timothy J ; Lakhtakia, Akhlesh ; Breakall, James K ; Bohren, Craig F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d6df27b416f2065b471cea88585de8d2397661a3dd40b5e3a1ef035fa6d4b19d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garner, Timothy J</creatorcontrib><creatorcontrib>Lakhtakia, Akhlesh</creatorcontrib><creatorcontrib>Breakall, James K</creatorcontrib><creatorcontrib>Bohren, Craig F</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garner, Timothy J</au><au>Lakhtakia, Akhlesh</au><au>Breakall, James K</au><au>Bohren, Craig F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electromagnetic pulse scattering by a spacecraft nearing light speed</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>56</volume><issue>22</issue><spage>6206</spage><epage>6213</epage><pages>6206-6213</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>Humans will launch spacecraft that travel at an appreciable fraction of the speed of light. Spacecraft traffic will be tracked by radar. Scattering of pulsed electromagnetic fields by an object in uniform translational motion at relativistic speed may be computed using the frame-hopping technique. Pulse scattering depends strongly on the velocity, shape, orientation, and composition of the object. The peak magnitude of the backscattered signal varies by many orders of magnitude, depending on whether the object is advancing toward or receding from the source of the interrogating signal. The peak magnitude of the backscattered signal goes to zero as the object recedes from the observer at a speed very closely approaching light speed, rendering the object invisible to the observer. The energy scattered by an object in motion may increase or decrease relative to the energy scattered by the same object at rest. Both the magnitude and sign of the change depend on the velocity of the object, as well as on its shape, orientation, and composition. In some cases, the change in total scattered energy is greatest when the object is moving transversely to the propagation direction of the interrogating signal, even though the Doppler effect is strongest when the motion is parallel or antiparallel to the propagation direction.</abstract><cop>United States</cop><pmid>29047815</pmid><doi>10.1364/AO.56.006206</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2179-2313</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1559-128X
ispartof Applied optics (2004), 2017-08, Vol.56 (22), p.6206-6213
issn 1559-128X
2155-3165
1539-4522
language eng
recordid cdi_proquest_miscellaneous_1953299923
source Alma/SFX Local Collection; Optica Publishing Group Journals
title Electromagnetic pulse scattering by a spacecraft nearing light speed
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A23%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electromagnetic%20pulse%20scattering%20by%20a%20spacecraft%20nearing%20light%20speed&rft.jtitle=Applied%20optics%20(2004)&rft.au=Garner,%20Timothy%20J&rft.date=2017-08-01&rft.volume=56&rft.issue=22&rft.spage=6206&rft.epage=6213&rft.pages=6206-6213&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.56.006206&rft_dat=%3Cproquest_cross%3E1953299923%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1953299923&rft_id=info:pmid/29047815&rfr_iscdi=true