Noise level estimation of BOTDA for optimal non-local means denoising

Due to the similarity of Brillouin optical time domain analyzer (BOTDA) signals, image denoising could be utilized to remove the noise. However, the performance can be much degraded due to inaccurate noise level estimation. By numerical and experimental study, we compare the noise level estimation o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Optics 2017-06, Vol.56 (16), p.4727-4734
Hauptverfasser: Qian, Xianyang, Jia, Xinhong, Wang, Zinan, Zhang, Bin, Xue, Naitian, Sun, Wei, He, Qiheng, Wu, Han
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4734
container_issue 16
container_start_page 4727
container_title Applied Optics
container_volume 56
creator Qian, Xianyang
Jia, Xinhong
Wang, Zinan
Zhang, Bin
Xue, Naitian
Sun, Wei
He, Qiheng
Wu, Han
description Due to the similarity of Brillouin optical time domain analyzer (BOTDA) signals, image denoising could be utilized to remove the noise. However, the performance can be much degraded due to inaccurate noise level estimation. By numerical and experimental study, we compare the noise level estimation of three different methods for BOTDA: calculating the standard deviation (STD) of the measurements, a filter-based estimation algorithm, and a patch-based estimation algorithm proposed in this paper, which selects weak textured patches of BOTDA signal and then estimates noise level using principal component analysis (W-PCA). The results show that W-PCA and the mean of STD can accurately estimate the noise level, while the filter-based method overestimates the noise level. Nevertheless, for BOTDA with distributed amplification, the STD has huge fluctuation along the length, while the W-PCA is relatively robust for its global consideration. Experimental results of an ultra-long-distance BOTDA prove that the non-local means denoising processing based on W-PCA effectively removes the noise of a sensing system without signal distortion.
doi_str_mv 10.1364/ao.56.004727
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1953299222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1953299222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-2ff1766e8550816cb2dd15016ae055aa993bcb5745151a043d80ea258972a2283</originalsourceid><addsrcrecordid>eNo9kElPwzAQhS0EoqVw44x85ECKl4wTH0spi1TRSzlbTjJBQY5d4haJf4-rFk6z6JunN4-Qa86mXKr83oYpqCljeSGKEzIWHCCTXMEpGTPGZKa0hBG5iPEzTZDr4pyMhE64YuWYLN5CF5E6_EZHMW673m674Glo6cNq_TijbRho2Oz3jvrgMxfq1PVofaQN-nTd-Y9LctZaF_HqWCfk_Wmxnr9ky9Xz63y2zGoJxTYTbcsLpbAEYCVXdSWahgPjyiIDsFZrWdUVFDlw4JblsikZWgGlLoQVopQTcnvQ3Qzha5fsmr6LNTpnPYZdNFyDFFoLIRJ6d0DrIcQ4YGs2Q3pi-DGcmX1wZrYyoMwhuITfHJV3VY_NP_yXlPwFPipmdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1953299222</pqid></control><display><type>article</type><title>Noise level estimation of BOTDA for optimal non-local means denoising</title><source>OSA Publishing</source><source>Alma/SFX Local Collection</source><creator>Qian, Xianyang ; Jia, Xinhong ; Wang, Zinan ; Zhang, Bin ; Xue, Naitian ; Sun, Wei ; He, Qiheng ; Wu, Han</creator><creatorcontrib>Qian, Xianyang ; Jia, Xinhong ; Wang, Zinan ; Zhang, Bin ; Xue, Naitian ; Sun, Wei ; He, Qiheng ; Wu, Han</creatorcontrib><description>Due to the similarity of Brillouin optical time domain analyzer (BOTDA) signals, image denoising could be utilized to remove the noise. However, the performance can be much degraded due to inaccurate noise level estimation. By numerical and experimental study, we compare the noise level estimation of three different methods for BOTDA: calculating the standard deviation (STD) of the measurements, a filter-based estimation algorithm, and a patch-based estimation algorithm proposed in this paper, which selects weak textured patches of BOTDA signal and then estimates noise level using principal component analysis (W-PCA). The results show that W-PCA and the mean of STD can accurately estimate the noise level, while the filter-based method overestimates the noise level. Nevertheless, for BOTDA with distributed amplification, the STD has huge fluctuation along the length, while the W-PCA is relatively robust for its global consideration. Experimental results of an ultra-long-distance BOTDA prove that the non-local means denoising processing based on W-PCA effectively removes the noise of a sensing system without signal distortion.</description><identifier>ISSN: 0003-6935</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/ao.56.004727</identifier><identifier>PMID: 29047608</identifier><language>eng</language><publisher>United States</publisher><ispartof>Applied Optics, 2017-06, Vol.56 (16), p.4727-4734</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-2ff1766e8550816cb2dd15016ae055aa993bcb5745151a043d80ea258972a2283</citedby><cites>FETCH-LOGICAL-c357t-2ff1766e8550816cb2dd15016ae055aa993bcb5745151a043d80ea258972a2283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29047608$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qian, Xianyang</creatorcontrib><creatorcontrib>Jia, Xinhong</creatorcontrib><creatorcontrib>Wang, Zinan</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Xue, Naitian</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>He, Qiheng</creatorcontrib><creatorcontrib>Wu, Han</creatorcontrib><title>Noise level estimation of BOTDA for optimal non-local means denoising</title><title>Applied Optics</title><addtitle>Appl Opt</addtitle><description>Due to the similarity of Brillouin optical time domain analyzer (BOTDA) signals, image denoising could be utilized to remove the noise. However, the performance can be much degraded due to inaccurate noise level estimation. By numerical and experimental study, we compare the noise level estimation of three different methods for BOTDA: calculating the standard deviation (STD) of the measurements, a filter-based estimation algorithm, and a patch-based estimation algorithm proposed in this paper, which selects weak textured patches of BOTDA signal and then estimates noise level using principal component analysis (W-PCA). The results show that W-PCA and the mean of STD can accurately estimate the noise level, while the filter-based method overestimates the noise level. Nevertheless, for BOTDA with distributed amplification, the STD has huge fluctuation along the length, while the W-PCA is relatively robust for its global consideration. Experimental results of an ultra-long-distance BOTDA prove that the non-local means denoising processing based on W-PCA effectively removes the noise of a sensing system without signal distortion.</description><issn>0003-6935</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kElPwzAQhS0EoqVw44x85ECKl4wTH0spi1TRSzlbTjJBQY5d4haJf4-rFk6z6JunN4-Qa86mXKr83oYpqCljeSGKEzIWHCCTXMEpGTPGZKa0hBG5iPEzTZDr4pyMhE64YuWYLN5CF5E6_EZHMW673m674Glo6cNq_TijbRho2Oz3jvrgMxfq1PVofaQN-nTd-Y9LctZaF_HqWCfk_Wmxnr9ky9Xz63y2zGoJxTYTbcsLpbAEYCVXdSWahgPjyiIDsFZrWdUVFDlw4JblsikZWgGlLoQVopQTcnvQ3Qzha5fsmr6LNTpnPYZdNFyDFFoLIRJ6d0DrIcQ4YGs2Q3pi-DGcmX1wZrYyoMwhuITfHJV3VY_NP_yXlPwFPipmdQ</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Qian, Xianyang</creator><creator>Jia, Xinhong</creator><creator>Wang, Zinan</creator><creator>Zhang, Bin</creator><creator>Xue, Naitian</creator><creator>Sun, Wei</creator><creator>He, Qiheng</creator><creator>Wu, Han</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170601</creationdate><title>Noise level estimation of BOTDA for optimal non-local means denoising</title><author>Qian, Xianyang ; Jia, Xinhong ; Wang, Zinan ; Zhang, Bin ; Xue, Naitian ; Sun, Wei ; He, Qiheng ; Wu, Han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-2ff1766e8550816cb2dd15016ae055aa993bcb5745151a043d80ea258972a2283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Xianyang</creatorcontrib><creatorcontrib>Jia, Xinhong</creatorcontrib><creatorcontrib>Wang, Zinan</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Xue, Naitian</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>He, Qiheng</creatorcontrib><creatorcontrib>Wu, Han</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Applied Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Xianyang</au><au>Jia, Xinhong</au><au>Wang, Zinan</au><au>Zhang, Bin</au><au>Xue, Naitian</au><au>Sun, Wei</au><au>He, Qiheng</au><au>Wu, Han</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise level estimation of BOTDA for optimal non-local means denoising</atitle><jtitle>Applied Optics</jtitle><addtitle>Appl Opt</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>56</volume><issue>16</issue><spage>4727</spage><epage>4734</epage><pages>4727-4734</pages><issn>0003-6935</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>Due to the similarity of Brillouin optical time domain analyzer (BOTDA) signals, image denoising could be utilized to remove the noise. However, the performance can be much degraded due to inaccurate noise level estimation. By numerical and experimental study, we compare the noise level estimation of three different methods for BOTDA: calculating the standard deviation (STD) of the measurements, a filter-based estimation algorithm, and a patch-based estimation algorithm proposed in this paper, which selects weak textured patches of BOTDA signal and then estimates noise level using principal component analysis (W-PCA). The results show that W-PCA and the mean of STD can accurately estimate the noise level, while the filter-based method overestimates the noise level. Nevertheless, for BOTDA with distributed amplification, the STD has huge fluctuation along the length, while the W-PCA is relatively robust for its global consideration. Experimental results of an ultra-long-distance BOTDA prove that the non-local means denoising processing based on W-PCA effectively removes the noise of a sensing system without signal distortion.</abstract><cop>United States</cop><pmid>29047608</pmid><doi>10.1364/ao.56.004727</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-6935
ispartof Applied Optics, 2017-06, Vol.56 (16), p.4727-4734
issn 0003-6935
2155-3165
1539-4522
language eng
recordid cdi_proquest_miscellaneous_1953299222
source OSA Publishing; Alma/SFX Local Collection
title Noise level estimation of BOTDA for optimal non-local means denoising
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A36%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise%20level%20estimation%20of%20BOTDA%20for%20optimal%20non-local%20means%20denoising&rft.jtitle=Applied%20Optics&rft.au=Qian,%20Xianyang&rft.date=2017-06-01&rft.volume=56&rft.issue=16&rft.spage=4727&rft.epage=4734&rft.pages=4727-4734&rft.issn=0003-6935&rft.eissn=2155-3165&rft_id=info:doi/10.1364/ao.56.004727&rft_dat=%3Cproquest_cross%3E1953299222%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1953299222&rft_id=info:pmid/29047608&rfr_iscdi=true