Noise level estimation of BOTDA for optimal non-local means denoising
Due to the similarity of Brillouin optical time domain analyzer (BOTDA) signals, image denoising could be utilized to remove the noise. However, the performance can be much degraded due to inaccurate noise level estimation. By numerical and experimental study, we compare the noise level estimation o...
Gespeichert in:
Veröffentlicht in: | Applied Optics 2017-06, Vol.56 (16), p.4727-4734 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4734 |
---|---|
container_issue | 16 |
container_start_page | 4727 |
container_title | Applied Optics |
container_volume | 56 |
creator | Qian, Xianyang Jia, Xinhong Wang, Zinan Zhang, Bin Xue, Naitian Sun, Wei He, Qiheng Wu, Han |
description | Due to the similarity of Brillouin optical time domain analyzer (BOTDA) signals, image denoising could be utilized to remove the noise. However, the performance can be much degraded due to inaccurate noise level estimation. By numerical and experimental study, we compare the noise level estimation of three different methods for BOTDA: calculating the standard deviation (STD) of the measurements, a filter-based estimation algorithm, and a patch-based estimation algorithm proposed in this paper, which selects weak textured patches of BOTDA signal and then estimates noise level using principal component analysis (W-PCA). The results show that W-PCA and the mean of STD can accurately estimate the noise level, while the filter-based method overestimates the noise level. Nevertheless, for BOTDA with distributed amplification, the STD has huge fluctuation along the length, while the W-PCA is relatively robust for its global consideration. Experimental results of an ultra-long-distance BOTDA prove that the non-local means denoising processing based on W-PCA effectively removes the noise of a sensing system without signal distortion. |
doi_str_mv | 10.1364/ao.56.004727 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1953299222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1953299222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-2ff1766e8550816cb2dd15016ae055aa993bcb5745151a043d80ea258972a2283</originalsourceid><addsrcrecordid>eNo9kElPwzAQhS0EoqVw44x85ECKl4wTH0spi1TRSzlbTjJBQY5d4haJf4-rFk6z6JunN4-Qa86mXKr83oYpqCljeSGKEzIWHCCTXMEpGTPGZKa0hBG5iPEzTZDr4pyMhE64YuWYLN5CF5E6_EZHMW673m674Glo6cNq_TijbRho2Oz3jvrgMxfq1PVofaQN-nTd-Y9LctZaF_HqWCfk_Wmxnr9ky9Xz63y2zGoJxTYTbcsLpbAEYCVXdSWahgPjyiIDsFZrWdUVFDlw4JblsikZWgGlLoQVopQTcnvQ3Qzha5fsmr6LNTpnPYZdNFyDFFoLIRJ6d0DrIcQ4YGs2Q3pi-DGcmX1wZrYyoMwhuITfHJV3VY_NP_yXlPwFPipmdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1953299222</pqid></control><display><type>article</type><title>Noise level estimation of BOTDA for optimal non-local means denoising</title><source>OSA Publishing</source><source>Alma/SFX Local Collection</source><creator>Qian, Xianyang ; Jia, Xinhong ; Wang, Zinan ; Zhang, Bin ; Xue, Naitian ; Sun, Wei ; He, Qiheng ; Wu, Han</creator><creatorcontrib>Qian, Xianyang ; Jia, Xinhong ; Wang, Zinan ; Zhang, Bin ; Xue, Naitian ; Sun, Wei ; He, Qiheng ; Wu, Han</creatorcontrib><description>Due to the similarity of Brillouin optical time domain analyzer (BOTDA) signals, image denoising could be utilized to remove the noise. However, the performance can be much degraded due to inaccurate noise level estimation. By numerical and experimental study, we compare the noise level estimation of three different methods for BOTDA: calculating the standard deviation (STD) of the measurements, a filter-based estimation algorithm, and a patch-based estimation algorithm proposed in this paper, which selects weak textured patches of BOTDA signal and then estimates noise level using principal component analysis (W-PCA). The results show that W-PCA and the mean of STD can accurately estimate the noise level, while the filter-based method overestimates the noise level. Nevertheless, for BOTDA with distributed amplification, the STD has huge fluctuation along the length, while the W-PCA is relatively robust for its global consideration. Experimental results of an ultra-long-distance BOTDA prove that the non-local means denoising processing based on W-PCA effectively removes the noise of a sensing system without signal distortion.</description><identifier>ISSN: 0003-6935</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/ao.56.004727</identifier><identifier>PMID: 29047608</identifier><language>eng</language><publisher>United States</publisher><ispartof>Applied Optics, 2017-06, Vol.56 (16), p.4727-4734</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-2ff1766e8550816cb2dd15016ae055aa993bcb5745151a043d80ea258972a2283</citedby><cites>FETCH-LOGICAL-c357t-2ff1766e8550816cb2dd15016ae055aa993bcb5745151a043d80ea258972a2283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29047608$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qian, Xianyang</creatorcontrib><creatorcontrib>Jia, Xinhong</creatorcontrib><creatorcontrib>Wang, Zinan</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Xue, Naitian</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>He, Qiheng</creatorcontrib><creatorcontrib>Wu, Han</creatorcontrib><title>Noise level estimation of BOTDA for optimal non-local means denoising</title><title>Applied Optics</title><addtitle>Appl Opt</addtitle><description>Due to the similarity of Brillouin optical time domain analyzer (BOTDA) signals, image denoising could be utilized to remove the noise. However, the performance can be much degraded due to inaccurate noise level estimation. By numerical and experimental study, we compare the noise level estimation of three different methods for BOTDA: calculating the standard deviation (STD) of the measurements, a filter-based estimation algorithm, and a patch-based estimation algorithm proposed in this paper, which selects weak textured patches of BOTDA signal and then estimates noise level using principal component analysis (W-PCA). The results show that W-PCA and the mean of STD can accurately estimate the noise level, while the filter-based method overestimates the noise level. Nevertheless, for BOTDA with distributed amplification, the STD has huge fluctuation along the length, while the W-PCA is relatively robust for its global consideration. Experimental results of an ultra-long-distance BOTDA prove that the non-local means denoising processing based on W-PCA effectively removes the noise of a sensing system without signal distortion.</description><issn>0003-6935</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kElPwzAQhS0EoqVw44x85ECKl4wTH0spi1TRSzlbTjJBQY5d4haJf4-rFk6z6JunN4-Qa86mXKr83oYpqCljeSGKEzIWHCCTXMEpGTPGZKa0hBG5iPEzTZDr4pyMhE64YuWYLN5CF5E6_EZHMW673m674Glo6cNq_TijbRho2Oz3jvrgMxfq1PVofaQN-nTd-Y9LctZaF_HqWCfk_Wmxnr9ky9Xz63y2zGoJxTYTbcsLpbAEYCVXdSWahgPjyiIDsFZrWdUVFDlw4JblsikZWgGlLoQVopQTcnvQ3Qzha5fsmr6LNTpnPYZdNFyDFFoLIRJ6d0DrIcQ4YGs2Q3pi-DGcmX1wZrYyoMwhuITfHJV3VY_NP_yXlPwFPipmdQ</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Qian, Xianyang</creator><creator>Jia, Xinhong</creator><creator>Wang, Zinan</creator><creator>Zhang, Bin</creator><creator>Xue, Naitian</creator><creator>Sun, Wei</creator><creator>He, Qiheng</creator><creator>Wu, Han</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170601</creationdate><title>Noise level estimation of BOTDA for optimal non-local means denoising</title><author>Qian, Xianyang ; Jia, Xinhong ; Wang, Zinan ; Zhang, Bin ; Xue, Naitian ; Sun, Wei ; He, Qiheng ; Wu, Han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-2ff1766e8550816cb2dd15016ae055aa993bcb5745151a043d80ea258972a2283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Xianyang</creatorcontrib><creatorcontrib>Jia, Xinhong</creatorcontrib><creatorcontrib>Wang, Zinan</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Xue, Naitian</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>He, Qiheng</creatorcontrib><creatorcontrib>Wu, Han</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Applied Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Xianyang</au><au>Jia, Xinhong</au><au>Wang, Zinan</au><au>Zhang, Bin</au><au>Xue, Naitian</au><au>Sun, Wei</au><au>He, Qiheng</au><au>Wu, Han</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise level estimation of BOTDA for optimal non-local means denoising</atitle><jtitle>Applied Optics</jtitle><addtitle>Appl Opt</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>56</volume><issue>16</issue><spage>4727</spage><epage>4734</epage><pages>4727-4734</pages><issn>0003-6935</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>Due to the similarity of Brillouin optical time domain analyzer (BOTDA) signals, image denoising could be utilized to remove the noise. However, the performance can be much degraded due to inaccurate noise level estimation. By numerical and experimental study, we compare the noise level estimation of three different methods for BOTDA: calculating the standard deviation (STD) of the measurements, a filter-based estimation algorithm, and a patch-based estimation algorithm proposed in this paper, which selects weak textured patches of BOTDA signal and then estimates noise level using principal component analysis (W-PCA). The results show that W-PCA and the mean of STD can accurately estimate the noise level, while the filter-based method overestimates the noise level. Nevertheless, for BOTDA with distributed amplification, the STD has huge fluctuation along the length, while the W-PCA is relatively robust for its global consideration. Experimental results of an ultra-long-distance BOTDA prove that the non-local means denoising processing based on W-PCA effectively removes the noise of a sensing system without signal distortion.</abstract><cop>United States</cop><pmid>29047608</pmid><doi>10.1364/ao.56.004727</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6935 |
ispartof | Applied Optics, 2017-06, Vol.56 (16), p.4727-4734 |
issn | 0003-6935 2155-3165 1539-4522 |
language | eng |
recordid | cdi_proquest_miscellaneous_1953299222 |
source | OSA Publishing; Alma/SFX Local Collection |
title | Noise level estimation of BOTDA for optimal non-local means denoising |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A36%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise%20level%20estimation%20of%20BOTDA%20for%20optimal%20non-local%20means%20denoising&rft.jtitle=Applied%20Optics&rft.au=Qian,%20Xianyang&rft.date=2017-06-01&rft.volume=56&rft.issue=16&rft.spage=4727&rft.epage=4734&rft.pages=4727-4734&rft.issn=0003-6935&rft.eissn=2155-3165&rft_id=info:doi/10.1364/ao.56.004727&rft_dat=%3Cproquest_cross%3E1953299222%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1953299222&rft_id=info:pmid/29047608&rfr_iscdi=true |