Strain induced atomic structure at the Ir-doped LaAlO3/SrTiO3 interface

The structure of Ir-doped LaAlO3/SrTiO3(001) interfaces was investigated on the atomic scale using probe-corrected transmission electron microscopy in high-angle annular dark-field scanning mode (HAADF-STEM) and electron energy loss spectroscopy (EELS), combined with first-principles calculations. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2017, Vol.19 (42), p.28676-28683
Hauptverfasser: Lee, M, Arras, R, Warot-Fonrose, B, Hungria, T, Lippmaa, M, Daimon, H, Casanove, M J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28683
container_issue 42
container_start_page 28676
container_title Physical chemistry chemical physics : PCCP
container_volume 19
creator Lee, M
Arras, R
Warot-Fonrose, B
Hungria, T
Lippmaa, M
Daimon, H
Casanove, M J
description The structure of Ir-doped LaAlO3/SrTiO3(001) interfaces was investigated on the atomic scale using probe-corrected transmission electron microscopy in high-angle annular dark-field scanning mode (HAADF-STEM) and electron energy loss spectroscopy (EELS), combined with first-principles calculations. We report the evolution of the strain state experimentally measured in a 5 unit-cell thick LaAlO3 film as a function of the Ir concentration in the topmost SrTiO3 layer. It is shown that the LaAlO3 layers remain fully elastically strained up to 3% of Ir doping, whereas a higher doping level seems to promote strain relaxation through enhanced cationic interdiffusion. The observed differences between the energy loss near edge structure (ELNES) of Ti-L2,3 and O-K edges at non-doped and Ir-doped interfaces are consistent with the location of the Ir dopants at the interface, up to 3% of Ir doping. These findings, supported by the results of density functional theory (DFT) calculations, provide strong evidence that the effect of dopant concentrations on the properties of this kind of interface should not be analyzed without obtaining essential information from the fine structural and chemical analysis of the grown structures.
doi_str_mv 10.1039/c7cp05918c
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1952525507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1952525507</sourcerecordid><originalsourceid>FETCH-LOGICAL-j254t-e8134c5e050688f7deae5c7e2d6feaee9ac9dcdfea1fbce57a893a301352da0d3</originalsourceid><addsrcrecordid>eNotjMFqwzAQREWh0DTppV_gYy9uVpZlS8cQ2jRg8CHpOWxXa-rg2K4k_38FLXOYxzAzQjxLeJWg7JZqmkFbaehOrGRZqdyCKR_EYwhXAJBaqpU4nKLHfsz60S3ELsM43XrKQvQLxcVzCrL4zdnR526aU6HB3dCq7cmf-1alWWTfIfFG3Hc4BH7697X4fH877z_ypj0c97smvxa6jDkbqUrSDBoqY7raMbKmmgtXdQnZIllHLrHsvoh1jcYqVCCVLhyCU2vx8vc7--ln4RAvtz4QDwOOPC3hIq0ukjTU6hcgD04D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952525507</pqid></control><display><type>article</type><title>Strain induced atomic structure at the Ir-doped LaAlO3/SrTiO3 interface</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Lee, M ; Arras, R ; Warot-Fonrose, B ; Hungria, T ; Lippmaa, M ; Daimon, H ; Casanove, M J</creator><creatorcontrib>Lee, M ; Arras, R ; Warot-Fonrose, B ; Hungria, T ; Lippmaa, M ; Daimon, H ; Casanove, M J</creatorcontrib><description>The structure of Ir-doped LaAlO3/SrTiO3(001) interfaces was investigated on the atomic scale using probe-corrected transmission electron microscopy in high-angle annular dark-field scanning mode (HAADF-STEM) and electron energy loss spectroscopy (EELS), combined with first-principles calculations. We report the evolution of the strain state experimentally measured in a 5 unit-cell thick LaAlO3 film as a function of the Ir concentration in the topmost SrTiO3 layer. It is shown that the LaAlO3 layers remain fully elastically strained up to 3% of Ir doping, whereas a higher doping level seems to promote strain relaxation through enhanced cationic interdiffusion. The observed differences between the energy loss near edge structure (ELNES) of Ti-L2,3 and O-K edges at non-doped and Ir-doped interfaces are consistent with the location of the Ir dopants at the interface, up to 3% of Ir doping. These findings, supported by the results of density functional theory (DFT) calculations, provide strong evidence that the effect of dopant concentrations on the properties of this kind of interface should not be analyzed without obtaining essential information from the fine structural and chemical analysis of the grown structures.</description><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c7cp05918c</identifier><language>eng</language><ispartof>Physical chemistry chemical physics : PCCP, 2017, Vol.19 (42), p.28676-28683</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Lee, M</creatorcontrib><creatorcontrib>Arras, R</creatorcontrib><creatorcontrib>Warot-Fonrose, B</creatorcontrib><creatorcontrib>Hungria, T</creatorcontrib><creatorcontrib>Lippmaa, M</creatorcontrib><creatorcontrib>Daimon, H</creatorcontrib><creatorcontrib>Casanove, M J</creatorcontrib><title>Strain induced atomic structure at the Ir-doped LaAlO3/SrTiO3 interface</title><title>Physical chemistry chemical physics : PCCP</title><description>The structure of Ir-doped LaAlO3/SrTiO3(001) interfaces was investigated on the atomic scale using probe-corrected transmission electron microscopy in high-angle annular dark-field scanning mode (HAADF-STEM) and electron energy loss spectroscopy (EELS), combined with first-principles calculations. We report the evolution of the strain state experimentally measured in a 5 unit-cell thick LaAlO3 film as a function of the Ir concentration in the topmost SrTiO3 layer. It is shown that the LaAlO3 layers remain fully elastically strained up to 3% of Ir doping, whereas a higher doping level seems to promote strain relaxation through enhanced cationic interdiffusion. The observed differences between the energy loss near edge structure (ELNES) of Ti-L2,3 and O-K edges at non-doped and Ir-doped interfaces are consistent with the location of the Ir dopants at the interface, up to 3% of Ir doping. These findings, supported by the results of density functional theory (DFT) calculations, provide strong evidence that the effect of dopant concentrations on the properties of this kind of interface should not be analyzed without obtaining essential information from the fine structural and chemical analysis of the grown structures.</description><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotjMFqwzAQREWh0DTppV_gYy9uVpZlS8cQ2jRg8CHpOWxXa-rg2K4k_38FLXOYxzAzQjxLeJWg7JZqmkFbaehOrGRZqdyCKR_EYwhXAJBaqpU4nKLHfsz60S3ELsM43XrKQvQLxcVzCrL4zdnR526aU6HB3dCq7cmf-1alWWTfIfFG3Hc4BH7697X4fH877z_ypj0c97smvxa6jDkbqUrSDBoqY7raMbKmmgtXdQnZIllHLrHsvoh1jcYqVCCVLhyCU2vx8vc7--ln4RAvtz4QDwOOPC3hIq0ukjTU6hcgD04D</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Lee, M</creator><creator>Arras, R</creator><creator>Warot-Fonrose, B</creator><creator>Hungria, T</creator><creator>Lippmaa, M</creator><creator>Daimon, H</creator><creator>Casanove, M J</creator><scope>7X8</scope></search><sort><creationdate>2017</creationdate><title>Strain induced atomic structure at the Ir-doped LaAlO3/SrTiO3 interface</title><author>Lee, M ; Arras, R ; Warot-Fonrose, B ; Hungria, T ; Lippmaa, M ; Daimon, H ; Casanove, M J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j254t-e8134c5e050688f7deae5c7e2d6feaee9ac9dcdfea1fbce57a893a301352da0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, M</creatorcontrib><creatorcontrib>Arras, R</creatorcontrib><creatorcontrib>Warot-Fonrose, B</creatorcontrib><creatorcontrib>Hungria, T</creatorcontrib><creatorcontrib>Lippmaa, M</creatorcontrib><creatorcontrib>Daimon, H</creatorcontrib><creatorcontrib>Casanove, M J</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, M</au><au>Arras, R</au><au>Warot-Fonrose, B</au><au>Hungria, T</au><au>Lippmaa, M</au><au>Daimon, H</au><au>Casanove, M J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain induced atomic structure at the Ir-doped LaAlO3/SrTiO3 interface</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2017</date><risdate>2017</risdate><volume>19</volume><issue>42</issue><spage>28676</spage><epage>28683</epage><pages>28676-28683</pages><eissn>1463-9084</eissn><abstract>The structure of Ir-doped LaAlO3/SrTiO3(001) interfaces was investigated on the atomic scale using probe-corrected transmission electron microscopy in high-angle annular dark-field scanning mode (HAADF-STEM) and electron energy loss spectroscopy (EELS), combined with first-principles calculations. We report the evolution of the strain state experimentally measured in a 5 unit-cell thick LaAlO3 film as a function of the Ir concentration in the topmost SrTiO3 layer. It is shown that the LaAlO3 layers remain fully elastically strained up to 3% of Ir doping, whereas a higher doping level seems to promote strain relaxation through enhanced cationic interdiffusion. The observed differences between the energy loss near edge structure (ELNES) of Ti-L2,3 and O-K edges at non-doped and Ir-doped interfaces are consistent with the location of the Ir dopants at the interface, up to 3% of Ir doping. These findings, supported by the results of density functional theory (DFT) calculations, provide strong evidence that the effect of dopant concentrations on the properties of this kind of interface should not be analyzed without obtaining essential information from the fine structural and chemical analysis of the grown structures.</abstract><doi>10.1039/c7cp05918c</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1463-9084
ispartof Physical chemistry chemical physics : PCCP, 2017, Vol.19 (42), p.28676-28683
issn 1463-9084
language eng
recordid cdi_proquest_miscellaneous_1952525507
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title Strain induced atomic structure at the Ir-doped LaAlO3/SrTiO3 interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A31%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain%20induced%20atomic%20structure%20at%20the%20Ir-doped%20LaAlO3/SrTiO3%20interface&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Lee,%20M&rft.date=2017&rft.volume=19&rft.issue=42&rft.spage=28676&rft.epage=28683&rft.pages=28676-28683&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c7cp05918c&rft_dat=%3Cproquest%3E1952525507%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1952525507&rft_id=info:pmid/&rfr_iscdi=true