A numerical study of atmospheric signals in the Earth-ionosphere electromagnetic cavity with the Transmission Line Matrix method
The effect of the Earth‐ionosphere electromagnetic cavity on the spectrum of an atmospheric signal generated by a broadband electrical current source is analyzed numerically by means of the Transmission Line Matrix (TLM) method. Two new TLM meshes are developed, one with transmission lines connected...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research. A. Space Physics 2006-10, Vol.111 (A10), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | A10 |
container_start_page | |
container_title | Journal of Geophysical Research. A. Space Physics |
container_volume | 111 |
creator | Morente, Juan A. Portí, Jorge A. Besser, Bruno P. Salinas, Alfonso Lichtenegger, Herbert I. M. Navarro, Enrique A. Molina-Cuberos, Gregorio J. |
description | The effect of the Earth‐ionosphere electromagnetic cavity on the spectrum of an atmospheric signal generated by a broadband electrical current source is analyzed numerically by means of the Transmission Line Matrix (TLM) method. Two new TLM meshes are developed, one with transmission lines connected in parallel and the other with connections in series. The equations describing propagation through these parallel or series meshes are equivalent to the Maxwell equations for TEr or TMr modes in the spherical Earth‐ionosphere cavity, respectively. The numerical algorithm obtains Schumann resonance frequencies very close to the experimental ones, confirming that this methodology is a valid numerical tool for predicting these resonances on other planets and moons. Finally, the TEr and TMr modes with a higher order than the Schumann resonances are also analyzed, finding that the effect of atmospheric conductivity is to shift the peak frequencies toward higher values than the eigenfrequencies corresponding to the lossless system. For daytime conditions, these peak frequencies appear around 2, 4, 6, 8… kHz, connected to an effective aboveground ionosphere height of approximately 75 km. In the night region, the shift is slightly smaller and the effective ionosphere height is around 85 km in agreement with smaller values in the conductivity profile. |
doi_str_mv | 10.1029/2006JA011726 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19523585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19523585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4160-5b8629e2cbae6c3cbcb2384b313799f2e6d820b4d7fb2e09347af668d07dbed93</originalsourceid><addsrcrecordid>eNp9kM1u1DAUhS0EEqO2uz6AN-2KUP8nXo6qMlBNi0CtkGZjOc5NY8jPYHtoZ9dHr0sqYIU3V7K-7-jeg9AxJe8pYfqMEaIul4TSkqlXaMGoVAVjhL1GC0JFVRDGyrfoKMbvJD8hlSB0gR6XeNwNELyzPY5p1-zx1GKbhiluu-dvHP3daPuI_YhTB_jChtQVfhpnADD04FKYBns3Qsq8s7982uN7n7rfwk2wYxx8jNnBaz8CvrIp-Ac8QOqm5hC9aXM8HL3MA3T74eLm_GOx_rz6dL5cF05QRQpZV4ppYK62oBx3tasZr0TNKS-1bhmopmKkFk3Z1gyI5qK0rVJVQ8qmhkbzA3Q6527D9HMHMZm8k4O-tyNMu2iolozLSmbw3Qy6MMUYoDXb4Acb9oYS89y0-bfpjJ-85NqYO2zztc7Hv07FKdFSZI7P3L3vYf_fTHO5-rqklaAkW8Vs-Zjg4Y9lww-jSl5K8-16ZdYbttGbL9JQ_gRLv52w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19523585</pqid></control><display><type>article</type><title>A numerical study of atmospheric signals in the Earth-ionosphere electromagnetic cavity with the Transmission Line Matrix method</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Morente, Juan A. ; Portí, Jorge A. ; Besser, Bruno P. ; Salinas, Alfonso ; Lichtenegger, Herbert I. M. ; Navarro, Enrique A. ; Molina-Cuberos, Gregorio J.</creator><creatorcontrib>Morente, Juan A. ; Portí, Jorge A. ; Besser, Bruno P. ; Salinas, Alfonso ; Lichtenegger, Herbert I. M. ; Navarro, Enrique A. ; Molina-Cuberos, Gregorio J.</creatorcontrib><description>The effect of the Earth‐ionosphere electromagnetic cavity on the spectrum of an atmospheric signal generated by a broadband electrical current source is analyzed numerically by means of the Transmission Line Matrix (TLM) method. Two new TLM meshes are developed, one with transmission lines connected in parallel and the other with connections in series. The equations describing propagation through these parallel or series meshes are equivalent to the Maxwell equations for TEr or TMr modes in the spherical Earth‐ionosphere cavity, respectively. The numerical algorithm obtains Schumann resonance frequencies very close to the experimental ones, confirming that this methodology is a valid numerical tool for predicting these resonances on other planets and moons. Finally, the TEr and TMr modes with a higher order than the Schumann resonances are also analyzed, finding that the effect of atmospheric conductivity is to shift the peak frequencies toward higher values than the eigenfrequencies corresponding to the lossless system. For daytime conditions, these peak frequencies appear around 2, 4, 6, 8… kHz, connected to an effective aboveground ionosphere height of approximately 75 km. In the night region, the shift is slightly smaller and the effective ionosphere height is around 85 km in agreement with smaller values in the conductivity profile.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2006JA011726</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>atmospherics ; Earth sciences ; Earth, ocean, space ; electromagnetic resonances ; Exact sciences and technology ; TLM method</subject><ispartof>Journal of Geophysical Research. A. Space Physics, 2006-10, Vol.111 (A10), p.n/a</ispartof><rights>Copyright 2006 by the American Geophysical Union.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4160-5b8629e2cbae6c3cbcb2384b313799f2e6d820b4d7fb2e09347af668d07dbed93</citedby><cites>FETCH-LOGICAL-c4160-5b8629e2cbae6c3cbcb2384b313799f2e6d820b4d7fb2e09347af668d07dbed93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2006JA011726$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2006JA011726$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18310954$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Morente, Juan A.</creatorcontrib><creatorcontrib>Portí, Jorge A.</creatorcontrib><creatorcontrib>Besser, Bruno P.</creatorcontrib><creatorcontrib>Salinas, Alfonso</creatorcontrib><creatorcontrib>Lichtenegger, Herbert I. M.</creatorcontrib><creatorcontrib>Navarro, Enrique A.</creatorcontrib><creatorcontrib>Molina-Cuberos, Gregorio J.</creatorcontrib><title>A numerical study of atmospheric signals in the Earth-ionosphere electromagnetic cavity with the Transmission Line Matrix method</title><title>Journal of Geophysical Research. A. Space Physics</title><addtitle>J. Geophys. Res</addtitle><description>The effect of the Earth‐ionosphere electromagnetic cavity on the spectrum of an atmospheric signal generated by a broadband electrical current source is analyzed numerically by means of the Transmission Line Matrix (TLM) method. Two new TLM meshes are developed, one with transmission lines connected in parallel and the other with connections in series. The equations describing propagation through these parallel or series meshes are equivalent to the Maxwell equations for TEr or TMr modes in the spherical Earth‐ionosphere cavity, respectively. The numerical algorithm obtains Schumann resonance frequencies very close to the experimental ones, confirming that this methodology is a valid numerical tool for predicting these resonances on other planets and moons. Finally, the TEr and TMr modes with a higher order than the Schumann resonances are also analyzed, finding that the effect of atmospheric conductivity is to shift the peak frequencies toward higher values than the eigenfrequencies corresponding to the lossless system. For daytime conditions, these peak frequencies appear around 2, 4, 6, 8… kHz, connected to an effective aboveground ionosphere height of approximately 75 km. In the night region, the shift is slightly smaller and the effective ionosphere height is around 85 km in agreement with smaller values in the conductivity profile.</description><subject>atmospherics</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>electromagnetic resonances</subject><subject>Exact sciences and technology</subject><subject>TLM method</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kM1u1DAUhS0EEqO2uz6AN-2KUP8nXo6qMlBNi0CtkGZjOc5NY8jPYHtoZ9dHr0sqYIU3V7K-7-jeg9AxJe8pYfqMEaIul4TSkqlXaMGoVAVjhL1GC0JFVRDGyrfoKMbvJD8hlSB0gR6XeNwNELyzPY5p1-zx1GKbhiluu-dvHP3daPuI_YhTB_jChtQVfhpnADD04FKYBns3Qsq8s7982uN7n7rfwk2wYxx8jNnBaz8CvrIp-Ac8QOqm5hC9aXM8HL3MA3T74eLm_GOx_rz6dL5cF05QRQpZV4ppYK62oBx3tasZr0TNKS-1bhmopmKkFk3Z1gyI5qK0rVJVQ8qmhkbzA3Q6527D9HMHMZm8k4O-tyNMu2iolozLSmbw3Qy6MMUYoDXb4Acb9oYS89y0-bfpjJ-85NqYO2zztc7Hv07FKdFSZI7P3L3vYf_fTHO5-rqklaAkW8Vs-Zjg4Y9lww-jSl5K8-16ZdYbttGbL9JQ_gRLv52w</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Morente, Juan A.</creator><creator>Portí, Jorge A.</creator><creator>Besser, Bruno P.</creator><creator>Salinas, Alfonso</creator><creator>Lichtenegger, Herbert I. M.</creator><creator>Navarro, Enrique A.</creator><creator>Molina-Cuberos, Gregorio J.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>200610</creationdate><title>A numerical study of atmospheric signals in the Earth-ionosphere electromagnetic cavity with the Transmission Line Matrix method</title><author>Morente, Juan A. ; Portí, Jorge A. ; Besser, Bruno P. ; Salinas, Alfonso ; Lichtenegger, Herbert I. M. ; Navarro, Enrique A. ; Molina-Cuberos, Gregorio J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4160-5b8629e2cbae6c3cbcb2384b313799f2e6d820b4d7fb2e09347af668d07dbed93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>atmospherics</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>electromagnetic resonances</topic><topic>Exact sciences and technology</topic><topic>TLM method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morente, Juan A.</creatorcontrib><creatorcontrib>Portí, Jorge A.</creatorcontrib><creatorcontrib>Besser, Bruno P.</creatorcontrib><creatorcontrib>Salinas, Alfonso</creatorcontrib><creatorcontrib>Lichtenegger, Herbert I. M.</creatorcontrib><creatorcontrib>Navarro, Enrique A.</creatorcontrib><creatorcontrib>Molina-Cuberos, Gregorio J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of Geophysical Research. A. Space Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morente, Juan A.</au><au>Portí, Jorge A.</au><au>Besser, Bruno P.</au><au>Salinas, Alfonso</au><au>Lichtenegger, Herbert I. M.</au><au>Navarro, Enrique A.</au><au>Molina-Cuberos, Gregorio J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical study of atmospheric signals in the Earth-ionosphere electromagnetic cavity with the Transmission Line Matrix method</atitle><jtitle>Journal of Geophysical Research. A. Space Physics</jtitle><addtitle>J. Geophys. Res</addtitle><date>2006-10</date><risdate>2006</risdate><volume>111</volume><issue>A10</issue><epage>n/a</epage><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>The effect of the Earth‐ionosphere electromagnetic cavity on the spectrum of an atmospheric signal generated by a broadband electrical current source is analyzed numerically by means of the Transmission Line Matrix (TLM) method. Two new TLM meshes are developed, one with transmission lines connected in parallel and the other with connections in series. The equations describing propagation through these parallel or series meshes are equivalent to the Maxwell equations for TEr or TMr modes in the spherical Earth‐ionosphere cavity, respectively. The numerical algorithm obtains Schumann resonance frequencies very close to the experimental ones, confirming that this methodology is a valid numerical tool for predicting these resonances on other planets and moons. Finally, the TEr and TMr modes with a higher order than the Schumann resonances are also analyzed, finding that the effect of atmospheric conductivity is to shift the peak frequencies toward higher values than the eigenfrequencies corresponding to the lossless system. For daytime conditions, these peak frequencies appear around 2, 4, 6, 8… kHz, connected to an effective aboveground ionosphere height of approximately 75 km. In the night region, the shift is slightly smaller and the effective ionosphere height is around 85 km in agreement with smaller values in the conductivity profile.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2006JA011726</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research. A. Space Physics, 2006-10, Vol.111 (A10), p.n/a |
issn | 0148-0227 2156-2202 |
language | eng |
recordid | cdi_proquest_miscellaneous_19523585 |
source | Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library All Journals; Alma/SFX Local Collection |
subjects | atmospherics Earth sciences Earth, ocean, space electromagnetic resonances Exact sciences and technology TLM method |
title | A numerical study of atmospheric signals in the Earth-ionosphere electromagnetic cavity with the Transmission Line Matrix method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A52%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20study%20of%20atmospheric%20signals%20in%20the%20Earth-ionosphere%20electromagnetic%20cavity%20with%20the%20Transmission%20Line%20Matrix%20method&rft.jtitle=Journal%20of%20Geophysical%20Research.%20A.%20Space%20Physics&rft.au=Morente,%20Juan%20A.&rft.date=2006-10&rft.volume=111&rft.issue=A10&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2006JA011726&rft_dat=%3Cproquest_cross%3E19523585%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19523585&rft_id=info:pmid/&rfr_iscdi=true |