Graphene Liquid Enclosure for Single-Molecule Analysis of Membrane Proteins in Whole Cells Using Electron Microscopy

Membrane proteins govern many important functions in cells via dynamic oligomerization into active complexes. However, analytical methods to study their distribution and functional state in relation to the cellular structure are currently limited. Here, we introduce a technique for studying single-m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2017-11, Vol.11 (11), p.11108-11117
Hauptverfasser: Dahmke, Indra N, Verch, Andreas, Hermannsdörfer, Justus, Peckys, Diana B, Weatherup, Robert S, Hofmann, Stephan, de Jonge, Niels
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11117
container_issue 11
container_start_page 11108
container_title ACS nano
container_volume 11
creator Dahmke, Indra N
Verch, Andreas
Hermannsdörfer, Justus
Peckys, Diana B
Weatherup, Robert S
Hofmann, Stephan
de Jonge, Niels
description Membrane proteins govern many important functions in cells via dynamic oligomerization into active complexes. However, analytical methods to study their distribution and functional state in relation to the cellular structure are currently limited. Here, we introduce a technique for studying single-membrane proteins within their native context of the intact plasma membrane. SKBR3 breast cancer cells were grown on silicon microchips with thin silicon nitride windows. The cells were fixed, and the epidermal growth factor receptor ErbB2 was specifically labeled with quantum dot (QD) nanoparticles. For correlative fluorescence- and liquid-phase electron microscopy, we enclosed the liquid samples by chemical vapor deposited (CVD) graphene films. Depending on the local cell thickness, QD labels were imaged with a spatial resolution of 2 nm at a low electron dose. The distribution and stoichiometric assembly of ErbB2 receptors were determined at several different cellular locations, including tunneling nanotubes, where we found higher levels of homodimerization at the connecting sites. This experimental approach is applicable to a wide range of cell lines and membrane proteins and particularly suitable for studies involving both inter- and intracellular heterogeneity in protein distribution and expression.
doi_str_mv 10.1021/acsnano.7b05258
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1952111302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1952111302</sourcerecordid><originalsourceid>FETCH-LOGICAL-a374t-c448ffabf0dfb2f395ab26f57ca22ab4c6150a32bf298d7199c950cf81889c163</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMobk7P3iRHQboladM2xzHmFDYUdOitpGniMtpkS9rD_r0Zq7t5-r7D-7y8PADcYzTGiOAJF95wY8dZiSih-QUYYhanEcrT78vzT_EA3Hi_RYhmeZZegwFhiMSIpUPQLhzfbaSRcKn3na7g3Ija-s5JqKyDH9r81DJa2VqKrpZwanh98NpDq-BKNqXjgXx3tpXaeKgN_NqEKJzJuvZw7QMN5wFtnTVwpYWzXtjd4RZcKV57edffEVg_zz9nL9HybfE6my4jHmdJG4kkyZXipUKVKomKGeUlSRXNBCeEl4lIMUU8JqUiLK8yzJhgFAmV4zxnAqfxCDyeenfO7jvp26LRXoRtYbXtfIEZJRjjOMgYgckpetzonVTFzumGu0OBUXFUXfSqi151IB768q5sZHXO_7kNgadTIJDF1nYuuPP_1v0CZ0eLnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952111302</pqid></control><display><type>article</type><title>Graphene Liquid Enclosure for Single-Molecule Analysis of Membrane Proteins in Whole Cells Using Electron Microscopy</title><source>MEDLINE</source><source>ACS Publications</source><creator>Dahmke, Indra N ; Verch, Andreas ; Hermannsdörfer, Justus ; Peckys, Diana B ; Weatherup, Robert S ; Hofmann, Stephan ; de Jonge, Niels</creator><creatorcontrib>Dahmke, Indra N ; Verch, Andreas ; Hermannsdörfer, Justus ; Peckys, Diana B ; Weatherup, Robert S ; Hofmann, Stephan ; de Jonge, Niels</creatorcontrib><description>Membrane proteins govern many important functions in cells via dynamic oligomerization into active complexes. However, analytical methods to study their distribution and functional state in relation to the cellular structure are currently limited. Here, we introduce a technique for studying single-membrane proteins within their native context of the intact plasma membrane. SKBR3 breast cancer cells were grown on silicon microchips with thin silicon nitride windows. The cells were fixed, and the epidermal growth factor receptor ErbB2 was specifically labeled with quantum dot (QD) nanoparticles. For correlative fluorescence- and liquid-phase electron microscopy, we enclosed the liquid samples by chemical vapor deposited (CVD) graphene films. Depending on the local cell thickness, QD labels were imaged with a spatial resolution of 2 nm at a low electron dose. The distribution and stoichiometric assembly of ErbB2 receptors were determined at several different cellular locations, including tunneling nanotubes, where we found higher levels of homodimerization at the connecting sites. This experimental approach is applicable to a wide range of cell lines and membrane proteins and particularly suitable for studies involving both inter- and intracellular heterogeneity in protein distribution and expression.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.7b05258</identifier><identifier>PMID: 29023096</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cell Line, Tumor ; Graphite - chemistry ; Humans ; Lab-On-A-Chip Devices ; Membrane Proteins - chemistry ; Microscopy, Electron ; Neoplasm Proteins - chemistry ; Neoplasm Proteins - genetics ; Neoplasm Proteins - isolation &amp; purification ; Quantum Dots - chemistry ; Receptor, ErbB-2 - chemistry ; Receptor, ErbB-2 - genetics ; Silicon Compounds - chemistry ; Single Molecule Imaging - methods</subject><ispartof>ACS nano, 2017-11, Vol.11 (11), p.11108-11117</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a374t-c448ffabf0dfb2f395ab26f57ca22ab4c6150a32bf298d7199c950cf81889c163</citedby><cites>FETCH-LOGICAL-a374t-c448ffabf0dfb2f395ab26f57ca22ab4c6150a32bf298d7199c950cf81889c163</cites><orcidid>0000-0001-6375-1459 ; 0000-0002-3993-9045 ; 0000-0002-3969-6821</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.7b05258$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.7b05258$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29023096$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dahmke, Indra N</creatorcontrib><creatorcontrib>Verch, Andreas</creatorcontrib><creatorcontrib>Hermannsdörfer, Justus</creatorcontrib><creatorcontrib>Peckys, Diana B</creatorcontrib><creatorcontrib>Weatherup, Robert S</creatorcontrib><creatorcontrib>Hofmann, Stephan</creatorcontrib><creatorcontrib>de Jonge, Niels</creatorcontrib><title>Graphene Liquid Enclosure for Single-Molecule Analysis of Membrane Proteins in Whole Cells Using Electron Microscopy</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Membrane proteins govern many important functions in cells via dynamic oligomerization into active complexes. However, analytical methods to study their distribution and functional state in relation to the cellular structure are currently limited. Here, we introduce a technique for studying single-membrane proteins within their native context of the intact plasma membrane. SKBR3 breast cancer cells were grown on silicon microchips with thin silicon nitride windows. The cells were fixed, and the epidermal growth factor receptor ErbB2 was specifically labeled with quantum dot (QD) nanoparticles. For correlative fluorescence- and liquid-phase electron microscopy, we enclosed the liquid samples by chemical vapor deposited (CVD) graphene films. Depending on the local cell thickness, QD labels were imaged with a spatial resolution of 2 nm at a low electron dose. The distribution and stoichiometric assembly of ErbB2 receptors were determined at several different cellular locations, including tunneling nanotubes, where we found higher levels of homodimerization at the connecting sites. This experimental approach is applicable to a wide range of cell lines and membrane proteins and particularly suitable for studies involving both inter- and intracellular heterogeneity in protein distribution and expression.</description><subject>Cell Line, Tumor</subject><subject>Graphite - chemistry</subject><subject>Humans</subject><subject>Lab-On-A-Chip Devices</subject><subject>Membrane Proteins - chemistry</subject><subject>Microscopy, Electron</subject><subject>Neoplasm Proteins - chemistry</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - isolation &amp; purification</subject><subject>Quantum Dots - chemistry</subject><subject>Receptor, ErbB-2 - chemistry</subject><subject>Receptor, ErbB-2 - genetics</subject><subject>Silicon Compounds - chemistry</subject><subject>Single Molecule Imaging - methods</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEFLwzAYhoMobk7P3iRHQboladM2xzHmFDYUdOitpGniMtpkS9rD_r0Zq7t5-r7D-7y8PADcYzTGiOAJF95wY8dZiSih-QUYYhanEcrT78vzT_EA3Hi_RYhmeZZegwFhiMSIpUPQLhzfbaSRcKn3na7g3Ija-s5JqKyDH9r81DJa2VqKrpZwanh98NpDq-BKNqXjgXx3tpXaeKgN_NqEKJzJuvZw7QMN5wFtnTVwpYWzXtjd4RZcKV57edffEVg_zz9nL9HybfE6my4jHmdJG4kkyZXipUKVKomKGeUlSRXNBCeEl4lIMUU8JqUiLK8yzJhgFAmV4zxnAqfxCDyeenfO7jvp26LRXoRtYbXtfIEZJRjjOMgYgckpetzonVTFzumGu0OBUXFUXfSqi151IB768q5sZHXO_7kNgadTIJDF1nYuuPP_1v0CZ0eLnw</recordid><startdate>20171128</startdate><enddate>20171128</enddate><creator>Dahmke, Indra N</creator><creator>Verch, Andreas</creator><creator>Hermannsdörfer, Justus</creator><creator>Peckys, Diana B</creator><creator>Weatherup, Robert S</creator><creator>Hofmann, Stephan</creator><creator>de Jonge, Niels</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6375-1459</orcidid><orcidid>https://orcid.org/0000-0002-3993-9045</orcidid><orcidid>https://orcid.org/0000-0002-3969-6821</orcidid></search><sort><creationdate>20171128</creationdate><title>Graphene Liquid Enclosure for Single-Molecule Analysis of Membrane Proteins in Whole Cells Using Electron Microscopy</title><author>Dahmke, Indra N ; Verch, Andreas ; Hermannsdörfer, Justus ; Peckys, Diana B ; Weatherup, Robert S ; Hofmann, Stephan ; de Jonge, Niels</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a374t-c448ffabf0dfb2f395ab26f57ca22ab4c6150a32bf298d7199c950cf81889c163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cell Line, Tumor</topic><topic>Graphite - chemistry</topic><topic>Humans</topic><topic>Lab-On-A-Chip Devices</topic><topic>Membrane Proteins - chemistry</topic><topic>Microscopy, Electron</topic><topic>Neoplasm Proteins - chemistry</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - isolation &amp; purification</topic><topic>Quantum Dots - chemistry</topic><topic>Receptor, ErbB-2 - chemistry</topic><topic>Receptor, ErbB-2 - genetics</topic><topic>Silicon Compounds - chemistry</topic><topic>Single Molecule Imaging - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dahmke, Indra N</creatorcontrib><creatorcontrib>Verch, Andreas</creatorcontrib><creatorcontrib>Hermannsdörfer, Justus</creatorcontrib><creatorcontrib>Peckys, Diana B</creatorcontrib><creatorcontrib>Weatherup, Robert S</creatorcontrib><creatorcontrib>Hofmann, Stephan</creatorcontrib><creatorcontrib>de Jonge, Niels</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dahmke, Indra N</au><au>Verch, Andreas</au><au>Hermannsdörfer, Justus</au><au>Peckys, Diana B</au><au>Weatherup, Robert S</au><au>Hofmann, Stephan</au><au>de Jonge, Niels</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene Liquid Enclosure for Single-Molecule Analysis of Membrane Proteins in Whole Cells Using Electron Microscopy</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2017-11-28</date><risdate>2017</risdate><volume>11</volume><issue>11</issue><spage>11108</spage><epage>11117</epage><pages>11108-11117</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Membrane proteins govern many important functions in cells via dynamic oligomerization into active complexes. However, analytical methods to study their distribution and functional state in relation to the cellular structure are currently limited. Here, we introduce a technique for studying single-membrane proteins within their native context of the intact plasma membrane. SKBR3 breast cancer cells were grown on silicon microchips with thin silicon nitride windows. The cells were fixed, and the epidermal growth factor receptor ErbB2 was specifically labeled with quantum dot (QD) nanoparticles. For correlative fluorescence- and liquid-phase electron microscopy, we enclosed the liquid samples by chemical vapor deposited (CVD) graphene films. Depending on the local cell thickness, QD labels were imaged with a spatial resolution of 2 nm at a low electron dose. The distribution and stoichiometric assembly of ErbB2 receptors were determined at several different cellular locations, including tunneling nanotubes, where we found higher levels of homodimerization at the connecting sites. This experimental approach is applicable to a wide range of cell lines and membrane proteins and particularly suitable for studies involving both inter- and intracellular heterogeneity in protein distribution and expression.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29023096</pmid><doi>10.1021/acsnano.7b05258</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6375-1459</orcidid><orcidid>https://orcid.org/0000-0002-3993-9045</orcidid><orcidid>https://orcid.org/0000-0002-3969-6821</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2017-11, Vol.11 (11), p.11108-11117
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1952111302
source MEDLINE; ACS Publications
subjects Cell Line, Tumor
Graphite - chemistry
Humans
Lab-On-A-Chip Devices
Membrane Proteins - chemistry
Microscopy, Electron
Neoplasm Proteins - chemistry
Neoplasm Proteins - genetics
Neoplasm Proteins - isolation & purification
Quantum Dots - chemistry
Receptor, ErbB-2 - chemistry
Receptor, ErbB-2 - genetics
Silicon Compounds - chemistry
Single Molecule Imaging - methods
title Graphene Liquid Enclosure for Single-Molecule Analysis of Membrane Proteins in Whole Cells Using Electron Microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T07%3A19%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20Liquid%20Enclosure%20for%20Single-Molecule%20Analysis%20of%20Membrane%20Proteins%20in%20Whole%20Cells%20Using%20Electron%20Microscopy&rft.jtitle=ACS%20nano&rft.au=Dahmke,%20Indra%20N&rft.date=2017-11-28&rft.volume=11&rft.issue=11&rft.spage=11108&rft.epage=11117&rft.pages=11108-11117&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.7b05258&rft_dat=%3Cproquest_cross%3E1952111302%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1952111302&rft_id=info:pmid/29023096&rfr_iscdi=true