Graphene Liquid Enclosure for Single-Molecule Analysis of Membrane Proteins in Whole Cells Using Electron Microscopy
Membrane proteins govern many important functions in cells via dynamic oligomerization into active complexes. However, analytical methods to study their distribution and functional state in relation to the cellular structure are currently limited. Here, we introduce a technique for studying single-m...
Gespeichert in:
Veröffentlicht in: | ACS nano 2017-11, Vol.11 (11), p.11108-11117 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11117 |
---|---|
container_issue | 11 |
container_start_page | 11108 |
container_title | ACS nano |
container_volume | 11 |
creator | Dahmke, Indra N Verch, Andreas Hermannsdörfer, Justus Peckys, Diana B Weatherup, Robert S Hofmann, Stephan de Jonge, Niels |
description | Membrane proteins govern many important functions in cells via dynamic oligomerization into active complexes. However, analytical methods to study their distribution and functional state in relation to the cellular structure are currently limited. Here, we introduce a technique for studying single-membrane proteins within their native context of the intact plasma membrane. SKBR3 breast cancer cells were grown on silicon microchips with thin silicon nitride windows. The cells were fixed, and the epidermal growth factor receptor ErbB2 was specifically labeled with quantum dot (QD) nanoparticles. For correlative fluorescence- and liquid-phase electron microscopy, we enclosed the liquid samples by chemical vapor deposited (CVD) graphene films. Depending on the local cell thickness, QD labels were imaged with a spatial resolution of 2 nm at a low electron dose. The distribution and stoichiometric assembly of ErbB2 receptors were determined at several different cellular locations, including tunneling nanotubes, where we found higher levels of homodimerization at the connecting sites. This experimental approach is applicable to a wide range of cell lines and membrane proteins and particularly suitable for studies involving both inter- and intracellular heterogeneity in protein distribution and expression. |
doi_str_mv | 10.1021/acsnano.7b05258 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1952111302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1952111302</sourcerecordid><originalsourceid>FETCH-LOGICAL-a374t-c448ffabf0dfb2f395ab26f57ca22ab4c6150a32bf298d7199c950cf81889c163</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMobk7P3iRHQboladM2xzHmFDYUdOitpGniMtpkS9rD_r0Zq7t5-r7D-7y8PADcYzTGiOAJF95wY8dZiSih-QUYYhanEcrT78vzT_EA3Hi_RYhmeZZegwFhiMSIpUPQLhzfbaSRcKn3na7g3Ija-s5JqKyDH9r81DJa2VqKrpZwanh98NpDq-BKNqXjgXx3tpXaeKgN_NqEKJzJuvZw7QMN5wFtnTVwpYWzXtjd4RZcKV57edffEVg_zz9nL9HybfE6my4jHmdJG4kkyZXipUKVKomKGeUlSRXNBCeEl4lIMUU8JqUiLK8yzJhgFAmV4zxnAqfxCDyeenfO7jvp26LRXoRtYbXtfIEZJRjjOMgYgckpetzonVTFzumGu0OBUXFUXfSqi151IB768q5sZHXO_7kNgadTIJDF1nYuuPP_1v0CZ0eLnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952111302</pqid></control><display><type>article</type><title>Graphene Liquid Enclosure for Single-Molecule Analysis of Membrane Proteins in Whole Cells Using Electron Microscopy</title><source>MEDLINE</source><source>ACS Publications</source><creator>Dahmke, Indra N ; Verch, Andreas ; Hermannsdörfer, Justus ; Peckys, Diana B ; Weatherup, Robert S ; Hofmann, Stephan ; de Jonge, Niels</creator><creatorcontrib>Dahmke, Indra N ; Verch, Andreas ; Hermannsdörfer, Justus ; Peckys, Diana B ; Weatherup, Robert S ; Hofmann, Stephan ; de Jonge, Niels</creatorcontrib><description>Membrane proteins govern many important functions in cells via dynamic oligomerization into active complexes. However, analytical methods to study their distribution and functional state in relation to the cellular structure are currently limited. Here, we introduce a technique for studying single-membrane proteins within their native context of the intact plasma membrane. SKBR3 breast cancer cells were grown on silicon microchips with thin silicon nitride windows. The cells were fixed, and the epidermal growth factor receptor ErbB2 was specifically labeled with quantum dot (QD) nanoparticles. For correlative fluorescence- and liquid-phase electron microscopy, we enclosed the liquid samples by chemical vapor deposited (CVD) graphene films. Depending on the local cell thickness, QD labels were imaged with a spatial resolution of 2 nm at a low electron dose. The distribution and stoichiometric assembly of ErbB2 receptors were determined at several different cellular locations, including tunneling nanotubes, where we found higher levels of homodimerization at the connecting sites. This experimental approach is applicable to a wide range of cell lines and membrane proteins and particularly suitable for studies involving both inter- and intracellular heterogeneity in protein distribution and expression.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.7b05258</identifier><identifier>PMID: 29023096</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cell Line, Tumor ; Graphite - chemistry ; Humans ; Lab-On-A-Chip Devices ; Membrane Proteins - chemistry ; Microscopy, Electron ; Neoplasm Proteins - chemistry ; Neoplasm Proteins - genetics ; Neoplasm Proteins - isolation & purification ; Quantum Dots - chemistry ; Receptor, ErbB-2 - chemistry ; Receptor, ErbB-2 - genetics ; Silicon Compounds - chemistry ; Single Molecule Imaging - methods</subject><ispartof>ACS nano, 2017-11, Vol.11 (11), p.11108-11117</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a374t-c448ffabf0dfb2f395ab26f57ca22ab4c6150a32bf298d7199c950cf81889c163</citedby><cites>FETCH-LOGICAL-a374t-c448ffabf0dfb2f395ab26f57ca22ab4c6150a32bf298d7199c950cf81889c163</cites><orcidid>0000-0001-6375-1459 ; 0000-0002-3993-9045 ; 0000-0002-3969-6821</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.7b05258$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.7b05258$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29023096$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dahmke, Indra N</creatorcontrib><creatorcontrib>Verch, Andreas</creatorcontrib><creatorcontrib>Hermannsdörfer, Justus</creatorcontrib><creatorcontrib>Peckys, Diana B</creatorcontrib><creatorcontrib>Weatherup, Robert S</creatorcontrib><creatorcontrib>Hofmann, Stephan</creatorcontrib><creatorcontrib>de Jonge, Niels</creatorcontrib><title>Graphene Liquid Enclosure for Single-Molecule Analysis of Membrane Proteins in Whole Cells Using Electron Microscopy</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Membrane proteins govern many important functions in cells via dynamic oligomerization into active complexes. However, analytical methods to study their distribution and functional state in relation to the cellular structure are currently limited. Here, we introduce a technique for studying single-membrane proteins within their native context of the intact plasma membrane. SKBR3 breast cancer cells were grown on silicon microchips with thin silicon nitride windows. The cells were fixed, and the epidermal growth factor receptor ErbB2 was specifically labeled with quantum dot (QD) nanoparticles. For correlative fluorescence- and liquid-phase electron microscopy, we enclosed the liquid samples by chemical vapor deposited (CVD) graphene films. Depending on the local cell thickness, QD labels were imaged with a spatial resolution of 2 nm at a low electron dose. The distribution and stoichiometric assembly of ErbB2 receptors were determined at several different cellular locations, including tunneling nanotubes, where we found higher levels of homodimerization at the connecting sites. This experimental approach is applicable to a wide range of cell lines and membrane proteins and particularly suitable for studies involving both inter- and intracellular heterogeneity in protein distribution and expression.</description><subject>Cell Line, Tumor</subject><subject>Graphite - chemistry</subject><subject>Humans</subject><subject>Lab-On-A-Chip Devices</subject><subject>Membrane Proteins - chemistry</subject><subject>Microscopy, Electron</subject><subject>Neoplasm Proteins - chemistry</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - isolation & purification</subject><subject>Quantum Dots - chemistry</subject><subject>Receptor, ErbB-2 - chemistry</subject><subject>Receptor, ErbB-2 - genetics</subject><subject>Silicon Compounds - chemistry</subject><subject>Single Molecule Imaging - methods</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEFLwzAYhoMobk7P3iRHQboladM2xzHmFDYUdOitpGniMtpkS9rD_r0Zq7t5-r7D-7y8PADcYzTGiOAJF95wY8dZiSih-QUYYhanEcrT78vzT_EA3Hi_RYhmeZZegwFhiMSIpUPQLhzfbaSRcKn3na7g3Ija-s5JqKyDH9r81DJa2VqKrpZwanh98NpDq-BKNqXjgXx3tpXaeKgN_NqEKJzJuvZw7QMN5wFtnTVwpYWzXtjd4RZcKV57edffEVg_zz9nL9HybfE6my4jHmdJG4kkyZXipUKVKomKGeUlSRXNBCeEl4lIMUU8JqUiLK8yzJhgFAmV4zxnAqfxCDyeenfO7jvp26LRXoRtYbXtfIEZJRjjOMgYgckpetzonVTFzumGu0OBUXFUXfSqi151IB768q5sZHXO_7kNgadTIJDF1nYuuPP_1v0CZ0eLnw</recordid><startdate>20171128</startdate><enddate>20171128</enddate><creator>Dahmke, Indra N</creator><creator>Verch, Andreas</creator><creator>Hermannsdörfer, Justus</creator><creator>Peckys, Diana B</creator><creator>Weatherup, Robert S</creator><creator>Hofmann, Stephan</creator><creator>de Jonge, Niels</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6375-1459</orcidid><orcidid>https://orcid.org/0000-0002-3993-9045</orcidid><orcidid>https://orcid.org/0000-0002-3969-6821</orcidid></search><sort><creationdate>20171128</creationdate><title>Graphene Liquid Enclosure for Single-Molecule Analysis of Membrane Proteins in Whole Cells Using Electron Microscopy</title><author>Dahmke, Indra N ; Verch, Andreas ; Hermannsdörfer, Justus ; Peckys, Diana B ; Weatherup, Robert S ; Hofmann, Stephan ; de Jonge, Niels</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a374t-c448ffabf0dfb2f395ab26f57ca22ab4c6150a32bf298d7199c950cf81889c163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cell Line, Tumor</topic><topic>Graphite - chemistry</topic><topic>Humans</topic><topic>Lab-On-A-Chip Devices</topic><topic>Membrane Proteins - chemistry</topic><topic>Microscopy, Electron</topic><topic>Neoplasm Proteins - chemistry</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - isolation & purification</topic><topic>Quantum Dots - chemistry</topic><topic>Receptor, ErbB-2 - chemistry</topic><topic>Receptor, ErbB-2 - genetics</topic><topic>Silicon Compounds - chemistry</topic><topic>Single Molecule Imaging - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dahmke, Indra N</creatorcontrib><creatorcontrib>Verch, Andreas</creatorcontrib><creatorcontrib>Hermannsdörfer, Justus</creatorcontrib><creatorcontrib>Peckys, Diana B</creatorcontrib><creatorcontrib>Weatherup, Robert S</creatorcontrib><creatorcontrib>Hofmann, Stephan</creatorcontrib><creatorcontrib>de Jonge, Niels</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dahmke, Indra N</au><au>Verch, Andreas</au><au>Hermannsdörfer, Justus</au><au>Peckys, Diana B</au><au>Weatherup, Robert S</au><au>Hofmann, Stephan</au><au>de Jonge, Niels</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene Liquid Enclosure for Single-Molecule Analysis of Membrane Proteins in Whole Cells Using Electron Microscopy</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2017-11-28</date><risdate>2017</risdate><volume>11</volume><issue>11</issue><spage>11108</spage><epage>11117</epage><pages>11108-11117</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Membrane proteins govern many important functions in cells via dynamic oligomerization into active complexes. However, analytical methods to study their distribution and functional state in relation to the cellular structure are currently limited. Here, we introduce a technique for studying single-membrane proteins within their native context of the intact plasma membrane. SKBR3 breast cancer cells were grown on silicon microchips with thin silicon nitride windows. The cells were fixed, and the epidermal growth factor receptor ErbB2 was specifically labeled with quantum dot (QD) nanoparticles. For correlative fluorescence- and liquid-phase electron microscopy, we enclosed the liquid samples by chemical vapor deposited (CVD) graphene films. Depending on the local cell thickness, QD labels were imaged with a spatial resolution of 2 nm at a low electron dose. The distribution and stoichiometric assembly of ErbB2 receptors were determined at several different cellular locations, including tunneling nanotubes, where we found higher levels of homodimerization at the connecting sites. This experimental approach is applicable to a wide range of cell lines and membrane proteins and particularly suitable for studies involving both inter- and intracellular heterogeneity in protein distribution and expression.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29023096</pmid><doi>10.1021/acsnano.7b05258</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6375-1459</orcidid><orcidid>https://orcid.org/0000-0002-3993-9045</orcidid><orcidid>https://orcid.org/0000-0002-3969-6821</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2017-11, Vol.11 (11), p.11108-11117 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_1952111302 |
source | MEDLINE; ACS Publications |
subjects | Cell Line, Tumor Graphite - chemistry Humans Lab-On-A-Chip Devices Membrane Proteins - chemistry Microscopy, Electron Neoplasm Proteins - chemistry Neoplasm Proteins - genetics Neoplasm Proteins - isolation & purification Quantum Dots - chemistry Receptor, ErbB-2 - chemistry Receptor, ErbB-2 - genetics Silicon Compounds - chemistry Single Molecule Imaging - methods |
title | Graphene Liquid Enclosure for Single-Molecule Analysis of Membrane Proteins in Whole Cells Using Electron Microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T07%3A19%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20Liquid%20Enclosure%20for%20Single-Molecule%20Analysis%20of%20Membrane%20Proteins%20in%20Whole%20Cells%20Using%20Electron%20Microscopy&rft.jtitle=ACS%20nano&rft.au=Dahmke,%20Indra%20N&rft.date=2017-11-28&rft.volume=11&rft.issue=11&rft.spage=11108&rft.epage=11117&rft.pages=11108-11117&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.7b05258&rft_dat=%3Cproquest_cross%3E1952111302%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1952111302&rft_id=info:pmid/29023096&rfr_iscdi=true |