NANODOSIMETRY: TOWARDS A NEW CONCEPT OF RADIATION QUALITY

The biological action of ionizing charged particles is initiated at the DNA level, and the effectiveness with which the initial physical effect changes into measurable biological damage is likely ruled by the stochastics of ionizations produced by the incident ions in subcellular nanometric volumes....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiation protection dosimetry 2018-08, Vol.180 (1-4), p.150-156
Hauptverfasser: Conte, V, Selva, A, Colautti, P, Hilgers, G, Rabus, H, Bantsar, A, Pietrzak, M, Pszona, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 156
container_issue 1-4
container_start_page 150
container_title Radiation protection dosimetry
container_volume 180
creator Conte, V
Selva, A
Colautti, P
Hilgers, G
Rabus, H
Bantsar, A
Pietrzak, M
Pszona, S
description The biological action of ionizing charged particles is initiated at the DNA level, and the effectiveness with which the initial physical effect changes into measurable biological damage is likely ruled by the stochastics of ionizations produced by the incident ions in subcellular nanometric volumes. Based on this hypothesis, experimental nanodosimetry aims at establishing a new concept of radiation quality that builds on measurable characteristics of the particle track structure at the nanometer scale. Three different nanodosimetric detection systems have been developed to date that allow measurements of the number of ionizations produced by the passage of a primary particle in a nanometer-size gas volume (in unit density scale). Within the Italian project MITRA (MIcrodosimetry and TRAck structure), funded by the Italian Istituto Nazionale di Fisica Nucleare (INFN) and the EMRP Joint Research Project 'BioQuaRT' (Biologically Weighted Quantities in Radiotherapy), experiments have been carried out, in which the frequency distribution of ionizations produced by proton and carbon ion beams of given energy was measured with the three nanodosimetric detectors. Descriptors of the track structure can be derived from these distributions. In particular, the first moment M1, representing the mean number of ionizations produced in the target volume, and the cumulative probability Fk of measuring a number ν ≥ k of ionizations. The correlation between measured nanodosimetric quantities and experimental radiobiological data available in the literature is here presented and discussed.
doi_str_mv 10.1093/rpd/ncx175
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1952107673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1952107673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-efbe5616989c8e526a56f8dbc31672294848dd38974e1155712beaed0667878f3</originalsourceid><addsrcrecordid>eNo90MtKw0AAheFBFFurGx9AZilC7Nwv7oY01UDNaJtSuhpymUClNzMt6NtbaXV1Nh9n8QNwi9EjRpr2223dX1dfWPIz0MWSkYgyJM5BF2HGIsUI6oCrED4QIlJzdgk6RCMqqGBdoDOT2YGdpK9JPp4_wdzOzHgwgQZmyQzGNouTtxzaIRybQWry1GbwfWpGaT6_BhdNsQz-5rQ9MB0mefwSjexzGptRVFGidpFvSs8FFlrpSnlORMFFo-qyolhIQjRTTNU1VVoyjzHnEpPSF75GQkglVUN74P74u203n3sfdm61CJVfLou13-yDw5oTjKSQ9EAfjrRqNyG0vnHbdrEq2m-HkftN5Q6p3DHVAd-dfvflytf_9K8N_QHgHF5m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952107673</pqid></control><display><type>article</type><title>NANODOSIMETRY: TOWARDS A NEW CONCEPT OF RADIATION QUALITY</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Conte, V ; Selva, A ; Colautti, P ; Hilgers, G ; Rabus, H ; Bantsar, A ; Pietrzak, M ; Pszona, S</creator><creatorcontrib>Conte, V ; Selva, A ; Colautti, P ; Hilgers, G ; Rabus, H ; Bantsar, A ; Pietrzak, M ; Pszona, S</creatorcontrib><description>The biological action of ionizing charged particles is initiated at the DNA level, and the effectiveness with which the initial physical effect changes into measurable biological damage is likely ruled by the stochastics of ionizations produced by the incident ions in subcellular nanometric volumes. Based on this hypothesis, experimental nanodosimetry aims at establishing a new concept of radiation quality that builds on measurable characteristics of the particle track structure at the nanometer scale. Three different nanodosimetric detection systems have been developed to date that allow measurements of the number of ionizations produced by the passage of a primary particle in a nanometer-size gas volume (in unit density scale). Within the Italian project MITRA (MIcrodosimetry and TRAck structure), funded by the Italian Istituto Nazionale di Fisica Nucleare (INFN) and the EMRP Joint Research Project 'BioQuaRT' (Biologically Weighted Quantities in Radiotherapy), experiments have been carried out, in which the frequency distribution of ionizations produced by proton and carbon ion beams of given energy was measured with the three nanodosimetric detectors. Descriptors of the track structure can be derived from these distributions. In particular, the first moment M1, representing the mean number of ionizations produced in the target volume, and the cumulative probability Fk of measuring a number ν ≥ k of ionizations. The correlation between measured nanodosimetric quantities and experimental radiobiological data available in the literature is here presented and discussed.</description><identifier>ISSN: 0144-8420</identifier><identifier>EISSN: 1742-3406</identifier><identifier>DOI: 10.1093/rpd/ncx175</identifier><identifier>PMID: 29036364</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Carbon ; Cell Survival ; CHO Cells ; Cricetulus ; Nanotechnology - instrumentation ; Nanotechnology - methods ; Nanotechnology - trends ; Occupational Exposure - analysis ; Protons ; Quality Assurance, Health Care ; Radiation Monitoring - instrumentation ; Radiation Monitoring - methods ; Radiation Protection - instrumentation ; Radiation Protection - methods ; Radiobiology ; Risk Assessment ; Safety Management</subject><ispartof>Radiation protection dosimetry, 2018-08, Vol.180 (1-4), p.150-156</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-efbe5616989c8e526a56f8dbc31672294848dd38974e1155712beaed0667878f3</citedby><orcidid>0000-0002-4256-3827 ; 0000-0001-9345-0251</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29036364$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Conte, V</creatorcontrib><creatorcontrib>Selva, A</creatorcontrib><creatorcontrib>Colautti, P</creatorcontrib><creatorcontrib>Hilgers, G</creatorcontrib><creatorcontrib>Rabus, H</creatorcontrib><creatorcontrib>Bantsar, A</creatorcontrib><creatorcontrib>Pietrzak, M</creatorcontrib><creatorcontrib>Pszona, S</creatorcontrib><title>NANODOSIMETRY: TOWARDS A NEW CONCEPT OF RADIATION QUALITY</title><title>Radiation protection dosimetry</title><addtitle>Radiat Prot Dosimetry</addtitle><description>The biological action of ionizing charged particles is initiated at the DNA level, and the effectiveness with which the initial physical effect changes into measurable biological damage is likely ruled by the stochastics of ionizations produced by the incident ions in subcellular nanometric volumes. Based on this hypothesis, experimental nanodosimetry aims at establishing a new concept of radiation quality that builds on measurable characteristics of the particle track structure at the nanometer scale. Three different nanodosimetric detection systems have been developed to date that allow measurements of the number of ionizations produced by the passage of a primary particle in a nanometer-size gas volume (in unit density scale). Within the Italian project MITRA (MIcrodosimetry and TRAck structure), funded by the Italian Istituto Nazionale di Fisica Nucleare (INFN) and the EMRP Joint Research Project 'BioQuaRT' (Biologically Weighted Quantities in Radiotherapy), experiments have been carried out, in which the frequency distribution of ionizations produced by proton and carbon ion beams of given energy was measured with the three nanodosimetric detectors. Descriptors of the track structure can be derived from these distributions. In particular, the first moment M1, representing the mean number of ionizations produced in the target volume, and the cumulative probability Fk of measuring a number ν ≥ k of ionizations. The correlation between measured nanodosimetric quantities and experimental radiobiological data available in the literature is here presented and discussed.</description><subject>Animals</subject><subject>Carbon</subject><subject>Cell Survival</subject><subject>CHO Cells</subject><subject>Cricetulus</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotechnology - methods</subject><subject>Nanotechnology - trends</subject><subject>Occupational Exposure - analysis</subject><subject>Protons</subject><subject>Quality Assurance, Health Care</subject><subject>Radiation Monitoring - instrumentation</subject><subject>Radiation Monitoring - methods</subject><subject>Radiation Protection - instrumentation</subject><subject>Radiation Protection - methods</subject><subject>Radiobiology</subject><subject>Risk Assessment</subject><subject>Safety Management</subject><issn>0144-8420</issn><issn>1742-3406</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo90MtKw0AAheFBFFurGx9AZilC7Nwv7oY01UDNaJtSuhpymUClNzMt6NtbaXV1Nh9n8QNwi9EjRpr2223dX1dfWPIz0MWSkYgyJM5BF2HGIsUI6oCrED4QIlJzdgk6RCMqqGBdoDOT2YGdpK9JPp4_wdzOzHgwgQZmyQzGNouTtxzaIRybQWry1GbwfWpGaT6_BhdNsQz-5rQ9MB0mefwSjexzGptRVFGidpFvSs8FFlrpSnlORMFFo-qyolhIQjRTTNU1VVoyjzHnEpPSF75GQkglVUN74P74u203n3sfdm61CJVfLou13-yDw5oTjKSQ9EAfjrRqNyG0vnHbdrEq2m-HkftN5Q6p3DHVAd-dfvflytf_9K8N_QHgHF5m</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Conte, V</creator><creator>Selva, A</creator><creator>Colautti, P</creator><creator>Hilgers, G</creator><creator>Rabus, H</creator><creator>Bantsar, A</creator><creator>Pietrzak, M</creator><creator>Pszona, S</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4256-3827</orcidid><orcidid>https://orcid.org/0000-0001-9345-0251</orcidid></search><sort><creationdate>20180801</creationdate><title>NANODOSIMETRY: TOWARDS A NEW CONCEPT OF RADIATION QUALITY</title><author>Conte, V ; Selva, A ; Colautti, P ; Hilgers, G ; Rabus, H ; Bantsar, A ; Pietrzak, M ; Pszona, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-efbe5616989c8e526a56f8dbc31672294848dd38974e1155712beaed0667878f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Carbon</topic><topic>Cell Survival</topic><topic>CHO Cells</topic><topic>Cricetulus</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotechnology - methods</topic><topic>Nanotechnology - trends</topic><topic>Occupational Exposure - analysis</topic><topic>Protons</topic><topic>Quality Assurance, Health Care</topic><topic>Radiation Monitoring - instrumentation</topic><topic>Radiation Monitoring - methods</topic><topic>Radiation Protection - instrumentation</topic><topic>Radiation Protection - methods</topic><topic>Radiobiology</topic><topic>Risk Assessment</topic><topic>Safety Management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conte, V</creatorcontrib><creatorcontrib>Selva, A</creatorcontrib><creatorcontrib>Colautti, P</creatorcontrib><creatorcontrib>Hilgers, G</creatorcontrib><creatorcontrib>Rabus, H</creatorcontrib><creatorcontrib>Bantsar, A</creatorcontrib><creatorcontrib>Pietrzak, M</creatorcontrib><creatorcontrib>Pszona, S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Radiation protection dosimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conte, V</au><au>Selva, A</au><au>Colautti, P</au><au>Hilgers, G</au><au>Rabus, H</au><au>Bantsar, A</au><au>Pietrzak, M</au><au>Pszona, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NANODOSIMETRY: TOWARDS A NEW CONCEPT OF RADIATION QUALITY</atitle><jtitle>Radiation protection dosimetry</jtitle><addtitle>Radiat Prot Dosimetry</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>180</volume><issue>1-4</issue><spage>150</spage><epage>156</epage><pages>150-156</pages><issn>0144-8420</issn><eissn>1742-3406</eissn><abstract>The biological action of ionizing charged particles is initiated at the DNA level, and the effectiveness with which the initial physical effect changes into measurable biological damage is likely ruled by the stochastics of ionizations produced by the incident ions in subcellular nanometric volumes. Based on this hypothesis, experimental nanodosimetry aims at establishing a new concept of radiation quality that builds on measurable characteristics of the particle track structure at the nanometer scale. Three different nanodosimetric detection systems have been developed to date that allow measurements of the number of ionizations produced by the passage of a primary particle in a nanometer-size gas volume (in unit density scale). Within the Italian project MITRA (MIcrodosimetry and TRAck structure), funded by the Italian Istituto Nazionale di Fisica Nucleare (INFN) and the EMRP Joint Research Project 'BioQuaRT' (Biologically Weighted Quantities in Radiotherapy), experiments have been carried out, in which the frequency distribution of ionizations produced by proton and carbon ion beams of given energy was measured with the three nanodosimetric detectors. Descriptors of the track structure can be derived from these distributions. In particular, the first moment M1, representing the mean number of ionizations produced in the target volume, and the cumulative probability Fk of measuring a number ν ≥ k of ionizations. The correlation between measured nanodosimetric quantities and experimental radiobiological data available in the literature is here presented and discussed.</abstract><cop>England</cop><pmid>29036364</pmid><doi>10.1093/rpd/ncx175</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4256-3827</orcidid><orcidid>https://orcid.org/0000-0001-9345-0251</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0144-8420
ispartof Radiation protection dosimetry, 2018-08, Vol.180 (1-4), p.150-156
issn 0144-8420
1742-3406
language eng
recordid cdi_proquest_miscellaneous_1952107673
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Alma/SFX Local Collection
subjects Animals
Carbon
Cell Survival
CHO Cells
Cricetulus
Nanotechnology - instrumentation
Nanotechnology - methods
Nanotechnology - trends
Occupational Exposure - analysis
Protons
Quality Assurance, Health Care
Radiation Monitoring - instrumentation
Radiation Monitoring - methods
Radiation Protection - instrumentation
Radiation Protection - methods
Radiobiology
Risk Assessment
Safety Management
title NANODOSIMETRY: TOWARDS A NEW CONCEPT OF RADIATION QUALITY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A12%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NANODOSIMETRY:%20TOWARDS%20A%20NEW%20CONCEPT%20OF%20RADIATION%20QUALITY&rft.jtitle=Radiation%20protection%20dosimetry&rft.au=Conte,%20V&rft.date=2018-08-01&rft.volume=180&rft.issue=1-4&rft.spage=150&rft.epage=156&rft.pages=150-156&rft.issn=0144-8420&rft.eissn=1742-3406&rft_id=info:doi/10.1093/rpd/ncx175&rft_dat=%3Cproquest_cross%3E1952107673%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1952107673&rft_id=info:pmid/29036364&rfr_iscdi=true