Multi-Task Vehicle Detection With Region-of-Interest Voting
Vehicle detection is a challenging problem in autonomous driving systems, due to its large structural and appearance variations. In this paper, we propose a novel vehicle detection scheme based on multi-task deep convolutional neural networks (CNNs) and region-of-interest (RoI) voting. In the design...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2018-01, Vol.27 (1), p.432-441 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 441 |
---|---|
container_issue | 1 |
container_start_page | 432 |
container_title | IEEE transactions on image processing |
container_volume | 27 |
creator | Chu, Wenqing Liu, Yao Shen, Chen Cai, Deng Hua, Xian-Sheng |
description | Vehicle detection is a challenging problem in autonomous driving systems, due to its large structural and appearance variations. In this paper, we propose a novel vehicle detection scheme based on multi-task deep convolutional neural networks (CNNs) and region-of-interest (RoI) voting. In the design of CNN architecture, we enrich the supervised information with subcategory, region overlap, bounding-box regression, and category of each training RoI as a multi-task learning framework. This design allows the CNN model to share visual knowledge among different vehicle attributes simultaneously, and thus, detection robustness can be effectively improved. In addition, most existing methods consider each RoI independently, ignoring the clues from its neighboring RoIs. In our approach, we utilize the CNN model to predict the offset direction of each RoI boundary toward the corresponding ground truth. Then, each RoI can vote those suitable adjacent bounding boxes, which are consistent with this additional information. The voting results are combined with the score of each RoI itself to find a more accurate location from a large number of candidates. Experimental results on the real-world computer vision benchmarks KITTI and the PASCAL2007 vehicle data set show that our approach achieves superior performance in vehicle detection compared with other existing published works. |
doi_str_mv | 10.1109/TIP.2017.2762591 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1951569064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8066331</ieee_id><sourcerecordid>1951569064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f983830664bb5eb151d0fb9501808e3857b3905ac36f3865a469961a4c8c28e83</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRrFbvgiA5etk6k_3ILp6kfhUqitR6DEk6aaNpU7Obg_-9W1p7mgfz3hvmx9gFwgAR7M1k9DaIAZNBnOhYWTxgJ2glcgAZHwYNKuEJSttjp859AaBUqI9ZL7YQG7TJCbt96Wpf8UnmvqMpLaqipuiePBW-albRZ-UX0TvNg-ZNyUcrTy05H00bX63mZ-yozGpH57vZZx-PD5PhMx-_Po2Gd2NeCLSel9YII0BrmeeKclQ4gzK3CtCAIWFUkgsLKiuELoXRKpPaWo2ZLEwRGzKiz663veu2-enC_XRZuYLqOltR07kUrUKlLWgZrLC1Fm3jXEtlum6rZdb-pgjpBlkakKUbZOkOWYhc7dq7fEmzfeCfUTBcbg0VEe3XJjwkBIo_av5tOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1951569064</pqid></control><display><type>article</type><title>Multi-Task Vehicle Detection With Region-of-Interest Voting</title><source>IEEE Electronic Library (IEL)</source><creator>Chu, Wenqing ; Liu, Yao ; Shen, Chen ; Cai, Deng ; Hua, Xian-Sheng</creator><creatorcontrib>Chu, Wenqing ; Liu, Yao ; Shen, Chen ; Cai, Deng ; Hua, Xian-Sheng</creatorcontrib><description>Vehicle detection is a challenging problem in autonomous driving systems, due to its large structural and appearance variations. In this paper, we propose a novel vehicle detection scheme based on multi-task deep convolutional neural networks (CNNs) and region-of-interest (RoI) voting. In the design of CNN architecture, we enrich the supervised information with subcategory, region overlap, bounding-box regression, and category of each training RoI as a multi-task learning framework. This design allows the CNN model to share visual knowledge among different vehicle attributes simultaneously, and thus, detection robustness can be effectively improved. In addition, most existing methods consider each RoI independently, ignoring the clues from its neighboring RoIs. In our approach, we utilize the CNN model to predict the offset direction of each RoI boundary toward the corresponding ground truth. Then, each RoI can vote those suitable adjacent bounding boxes, which are consistent with this additional information. The voting results are combined with the score of each RoI itself to find a more accurate location from a large number of candidates. Experimental results on the real-world computer vision benchmarks KITTI and the PASCAL2007 vehicle data set show that our approach achieves superior performance in vehicle detection compared with other existing published works.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2017.2762591</identifier><identifier>PMID: 29028197</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>CNN ; Feature extraction ; multi-task ; Object detection ; Proposals ; region-of-interest ; Solid modeling ; Three-dimensional displays ; Vehicle detection</subject><ispartof>IEEE transactions on image processing, 2018-01, Vol.27 (1), p.432-441</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f983830664bb5eb151d0fb9501808e3857b3905ac36f3865a469961a4c8c28e83</citedby><cites>FETCH-LOGICAL-c319t-f983830664bb5eb151d0fb9501808e3857b3905ac36f3865a469961a4c8c28e83</cites><orcidid>0000-0003-0816-7975</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8066331$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8066331$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29028197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chu, Wenqing</creatorcontrib><creatorcontrib>Liu, Yao</creatorcontrib><creatorcontrib>Shen, Chen</creatorcontrib><creatorcontrib>Cai, Deng</creatorcontrib><creatorcontrib>Hua, Xian-Sheng</creatorcontrib><title>Multi-Task Vehicle Detection With Region-of-Interest Voting</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Vehicle detection is a challenging problem in autonomous driving systems, due to its large structural and appearance variations. In this paper, we propose a novel vehicle detection scheme based on multi-task deep convolutional neural networks (CNNs) and region-of-interest (RoI) voting. In the design of CNN architecture, we enrich the supervised information with subcategory, region overlap, bounding-box regression, and category of each training RoI as a multi-task learning framework. This design allows the CNN model to share visual knowledge among different vehicle attributes simultaneously, and thus, detection robustness can be effectively improved. In addition, most existing methods consider each RoI independently, ignoring the clues from its neighboring RoIs. In our approach, we utilize the CNN model to predict the offset direction of each RoI boundary toward the corresponding ground truth. Then, each RoI can vote those suitable adjacent bounding boxes, which are consistent with this additional information. The voting results are combined with the score of each RoI itself to find a more accurate location from a large number of candidates. Experimental results on the real-world computer vision benchmarks KITTI and the PASCAL2007 vehicle data set show that our approach achieves superior performance in vehicle detection compared with other existing published works.</description><subject>CNN</subject><subject>Feature extraction</subject><subject>multi-task</subject><subject>Object detection</subject><subject>Proposals</subject><subject>region-of-interest</subject><subject>Solid modeling</subject><subject>Three-dimensional displays</subject><subject>Vehicle detection</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRrFbvgiA5etk6k_3ILp6kfhUqitR6DEk6aaNpU7Obg_-9W1p7mgfz3hvmx9gFwgAR7M1k9DaIAZNBnOhYWTxgJ2glcgAZHwYNKuEJSttjp859AaBUqI9ZL7YQG7TJCbt96Wpf8UnmvqMpLaqipuiePBW-albRZ-UX0TvNg-ZNyUcrTy05H00bX63mZ-yozGpH57vZZx-PD5PhMx-_Po2Gd2NeCLSel9YII0BrmeeKclQ4gzK3CtCAIWFUkgsLKiuELoXRKpPaWo2ZLEwRGzKiz663veu2-enC_XRZuYLqOltR07kUrUKlLWgZrLC1Fm3jXEtlum6rZdb-pgjpBlkakKUbZOkOWYhc7dq7fEmzfeCfUTBcbg0VEe3XJjwkBIo_av5tOw</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Chu, Wenqing</creator><creator>Liu, Yao</creator><creator>Shen, Chen</creator><creator>Cai, Deng</creator><creator>Hua, Xian-Sheng</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0816-7975</orcidid></search><sort><creationdate>201801</creationdate><title>Multi-Task Vehicle Detection With Region-of-Interest Voting</title><author>Chu, Wenqing ; Liu, Yao ; Shen, Chen ; Cai, Deng ; Hua, Xian-Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f983830664bb5eb151d0fb9501808e3857b3905ac36f3865a469961a4c8c28e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CNN</topic><topic>Feature extraction</topic><topic>multi-task</topic><topic>Object detection</topic><topic>Proposals</topic><topic>region-of-interest</topic><topic>Solid modeling</topic><topic>Three-dimensional displays</topic><topic>Vehicle detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Wenqing</creatorcontrib><creatorcontrib>Liu, Yao</creatorcontrib><creatorcontrib>Shen, Chen</creatorcontrib><creatorcontrib>Cai, Deng</creatorcontrib><creatorcontrib>Hua, Xian-Sheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chu, Wenqing</au><au>Liu, Yao</au><au>Shen, Chen</au><au>Cai, Deng</au><au>Hua, Xian-Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Task Vehicle Detection With Region-of-Interest Voting</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2018-01</date><risdate>2018</risdate><volume>27</volume><issue>1</issue><spage>432</spage><epage>441</epage><pages>432-441</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Vehicle detection is a challenging problem in autonomous driving systems, due to its large structural and appearance variations. In this paper, we propose a novel vehicle detection scheme based on multi-task deep convolutional neural networks (CNNs) and region-of-interest (RoI) voting. In the design of CNN architecture, we enrich the supervised information with subcategory, region overlap, bounding-box regression, and category of each training RoI as a multi-task learning framework. This design allows the CNN model to share visual knowledge among different vehicle attributes simultaneously, and thus, detection robustness can be effectively improved. In addition, most existing methods consider each RoI independently, ignoring the clues from its neighboring RoIs. In our approach, we utilize the CNN model to predict the offset direction of each RoI boundary toward the corresponding ground truth. Then, each RoI can vote those suitable adjacent bounding boxes, which are consistent with this additional information. The voting results are combined with the score of each RoI itself to find a more accurate location from a large number of candidates. Experimental results on the real-world computer vision benchmarks KITTI and the PASCAL2007 vehicle data set show that our approach achieves superior performance in vehicle detection compared with other existing published works.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29028197</pmid><doi>10.1109/TIP.2017.2762591</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0816-7975</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2018-01, Vol.27 (1), p.432-441 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_miscellaneous_1951569064 |
source | IEEE Electronic Library (IEL) |
subjects | CNN Feature extraction multi-task Object detection Proposals region-of-interest Solid modeling Three-dimensional displays Vehicle detection |
title | Multi-Task Vehicle Detection With Region-of-Interest Voting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A12%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Task%20Vehicle%20Detection%20With%20Region-of-Interest%20Voting&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Chu,%20Wenqing&rft.date=2018-01&rft.volume=27&rft.issue=1&rft.spage=432&rft.epage=441&rft.pages=432-441&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2017.2762591&rft_dat=%3Cproquest_RIE%3E1951569064%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1951569064&rft_id=info:pmid/29028197&rft_ieee_id=8066331&rfr_iscdi=true |