Acute myeloid leukaemia disrupts endogenous myelo-erythropoiesis by compromising the adipocyte bone marrow niche
Acute myeloid leukaemia (AML) is distinguished by the generation of dysfunctional leukaemic blasts, and patients characteristically suffer from fatal infections and anaemia due to insufficient normal myelo-erythropoiesis. Direct physical crowding of bone marrow (BM) by accumulating leukaemic cells d...
Gespeichert in:
Veröffentlicht in: | Nature cell biology 2017-11, Vol.19 (11), p.1336-1347 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1347 |
---|---|
container_issue | 11 |
container_start_page | 1336 |
container_title | Nature cell biology |
container_volume | 19 |
creator | Boyd, Allison L. Reid, Jennifer C. Salci, Kyle R. Aslostovar, Lili Benoit, Yannick D. Shapovalova, Zoya Nakanishi, Mio Porras, Deanna P. Almakadi, Mohammed Campbell, Clinton J. V. Jackson, Michael F. Ross, Catherine A. Foley, Ronan Leber, Brian Allan, David S. Sabloff, Mitchell Xenocostas, Anargyros Collins, Tony J. Bhatia, Mickie |
description | Acute myeloid leukaemia (AML) is distinguished by the generation of dysfunctional leukaemic blasts, and patients characteristically suffer from fatal infections and anaemia due to insufficient normal myelo-erythropoiesis. Direct physical crowding of bone marrow (BM) by accumulating leukaemic cells does not fully account for this haematopoietic failure. Here, analyses from AML patients were applied to both
in vitro
co-culture platforms and
in vivo
xenograft modelling, revealing that human AML disease specifically disrupts the adipocytic niche in BM. Leukaemic suppression of BM adipocytes led to imbalanced regulation of endogenous haematopoietic stem and progenitor cells, resulting in impaired myelo-erythroid maturation.
In vivo
administration of PPARγ agonists induced BM adipogenesis, which rescued healthy haematopoietic maturation while repressing leukaemic growth. Our study identifies a previously unappreciated axis between BM adipogenesis and normal myelo-erythroid maturation that is therapeutically accessible to improve symptoms of BM failure in AML via non-cell autonomous targeting of the niche.
Boyd
et al.
monitored the effects of patient-derived acute myeloid leukaemia (AML) cells on human HSPCs
in vivo
and found that AML impairs bone marrow adipocyte differentiation, and this in turn impedes healthy endogenous haematopoiesis. |
doi_str_mv | 10.1038/ncb3625 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1951565951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632744268</galeid><sourcerecordid>A632744268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-890926284ff44cd712797725d5df4a03464feb49ef12d007d815d20242882c583</originalsourceid><addsrcrecordid>eNptktuK1TAUhosozjiKbyAFL9SLjjk2zeVm8DAwIHi4Dmmy2p2xTWrSon17U_bWcQ8SSELyrT9r_VlF8RyjS4xo89abltaEPyjOMRN1xWohH277mleCSnJWPEnpFiHMGBKPizMiEeWUy_Ni2pllhnJcYQjOlgMs3zWMTpfWpbhMcyrB29CDD0s6UBXEdd7HMAUHyaWyXUsTximG0SXn-3LeQ6mtm4JZs3AbfFbXMYafpXdmD0-LR50eEjw7rhfFt_fvvl59rG4-fbi-2t1UhjE6V41EktSkYV3HmLECEyGFINxy2zGNKKtZBy2T0GFiERK2wdwSRBhpGmJ4Qy-K1wfdnNmPBdKscn4GhkF7yLUoLDnmNc9zRl_eQ2_DEn3ObqMaIjll_I7q9QDK-S7MUZtNVO1qSgRjpN6evfwPlYfNrppsRufy-UnAm5OAzMzwa-71kpK6_vL5lH11YE0MKUXo1BRdNndVGKmtD9SxDzL54ljS0o5g_3J_Pv7OnpSvfA_xn5rvaf0GUke4_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1958295345</pqid></control><display><type>article</type><title>Acute myeloid leukaemia disrupts endogenous myelo-erythropoiesis by compromising the adipocyte bone marrow niche</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Boyd, Allison L. ; Reid, Jennifer C. ; Salci, Kyle R. ; Aslostovar, Lili ; Benoit, Yannick D. ; Shapovalova, Zoya ; Nakanishi, Mio ; Porras, Deanna P. ; Almakadi, Mohammed ; Campbell, Clinton J. V. ; Jackson, Michael F. ; Ross, Catherine A. ; Foley, Ronan ; Leber, Brian ; Allan, David S. ; Sabloff, Mitchell ; Xenocostas, Anargyros ; Collins, Tony J. ; Bhatia, Mickie</creator><creatorcontrib>Boyd, Allison L. ; Reid, Jennifer C. ; Salci, Kyle R. ; Aslostovar, Lili ; Benoit, Yannick D. ; Shapovalova, Zoya ; Nakanishi, Mio ; Porras, Deanna P. ; Almakadi, Mohammed ; Campbell, Clinton J. V. ; Jackson, Michael F. ; Ross, Catherine A. ; Foley, Ronan ; Leber, Brian ; Allan, David S. ; Sabloff, Mitchell ; Xenocostas, Anargyros ; Collins, Tony J. ; Bhatia, Mickie</creatorcontrib><description>Acute myeloid leukaemia (AML) is distinguished by the generation of dysfunctional leukaemic blasts, and patients characteristically suffer from fatal infections and anaemia due to insufficient normal myelo-erythropoiesis. Direct physical crowding of bone marrow (BM) by accumulating leukaemic cells does not fully account for this haematopoietic failure. Here, analyses from AML patients were applied to both
in vitro
co-culture platforms and
in vivo
xenograft modelling, revealing that human AML disease specifically disrupts the adipocytic niche in BM. Leukaemic suppression of BM adipocytes led to imbalanced regulation of endogenous haematopoietic stem and progenitor cells, resulting in impaired myelo-erythroid maturation.
In vivo
administration of PPARγ agonists induced BM adipogenesis, which rescued healthy haematopoietic maturation while repressing leukaemic growth. Our study identifies a previously unappreciated axis between BM adipogenesis and normal myelo-erythroid maturation that is therapeutically accessible to improve symptoms of BM failure in AML via non-cell autonomous targeting of the niche.
Boyd
et al.
monitored the effects of patient-derived acute myeloid leukaemia (AML) cells on human HSPCs
in vivo
and found that AML impairs bone marrow adipocyte differentiation, and this in turn impedes healthy endogenous haematopoiesis.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/ncb3625</identifier><identifier>PMID: 29035359</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 631/532/1542 ; 631/532/2118/2074 ; 631/67 ; 631/67/327 ; Acute myeloid leukemia ; Adipocytes ; Adipocytes - pathology ; Adipogenesis ; Adipogenesis - physiology ; Adult ; Aged ; Analysis ; Anemia ; Animals ; Bone marrow ; Bone Marrow - metabolism ; Bone Marrow - pathology ; Bone marrow cells ; Bone Marrow Cells - metabolism ; Bone Marrow Cells - pathology ; Cancer Research ; Cell Biology ; Cell culture ; Cells (biology) ; Coculture Techniques - methods ; Developmental Biology ; Erythropoiesis ; Erythropoiesis - physiology ; Failure analysis ; Female ; Hematopoiesis ; Hematopoietic Stem Cells ; Humans ; Leukemia ; Leukemia, Myeloid, Acute - pathology ; Life Sciences ; Male ; Maturation ; Mice ; Mice, Inbred NOD ; Middle Aged ; Patients ; PPAR gamma - metabolism ; Stem Cells ; Stem Cells - pathology ; Xenografts ; Young Adult</subject><ispartof>Nature cell biology, 2017-11, Vol.19 (11), p.1336-1347</ispartof><rights>Springer Nature Limited 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Nov 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-890926284ff44cd712797725d5df4a03464feb49ef12d007d815d20242882c583</citedby><cites>FETCH-LOGICAL-c443t-890926284ff44cd712797725d5df4a03464feb49ef12d007d815d20242882c583</cites><orcidid>0000-0002-7046-5271 ; 0000-0002-9304-5130</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncb3625$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ncb3625$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29035359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boyd, Allison L.</creatorcontrib><creatorcontrib>Reid, Jennifer C.</creatorcontrib><creatorcontrib>Salci, Kyle R.</creatorcontrib><creatorcontrib>Aslostovar, Lili</creatorcontrib><creatorcontrib>Benoit, Yannick D.</creatorcontrib><creatorcontrib>Shapovalova, Zoya</creatorcontrib><creatorcontrib>Nakanishi, Mio</creatorcontrib><creatorcontrib>Porras, Deanna P.</creatorcontrib><creatorcontrib>Almakadi, Mohammed</creatorcontrib><creatorcontrib>Campbell, Clinton J. V.</creatorcontrib><creatorcontrib>Jackson, Michael F.</creatorcontrib><creatorcontrib>Ross, Catherine A.</creatorcontrib><creatorcontrib>Foley, Ronan</creatorcontrib><creatorcontrib>Leber, Brian</creatorcontrib><creatorcontrib>Allan, David S.</creatorcontrib><creatorcontrib>Sabloff, Mitchell</creatorcontrib><creatorcontrib>Xenocostas, Anargyros</creatorcontrib><creatorcontrib>Collins, Tony J.</creatorcontrib><creatorcontrib>Bhatia, Mickie</creatorcontrib><title>Acute myeloid leukaemia disrupts endogenous myelo-erythropoiesis by compromising the adipocyte bone marrow niche</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Acute myeloid leukaemia (AML) is distinguished by the generation of dysfunctional leukaemic blasts, and patients characteristically suffer from fatal infections and anaemia due to insufficient normal myelo-erythropoiesis. Direct physical crowding of bone marrow (BM) by accumulating leukaemic cells does not fully account for this haematopoietic failure. Here, analyses from AML patients were applied to both
in vitro
co-culture platforms and
in vivo
xenograft modelling, revealing that human AML disease specifically disrupts the adipocytic niche in BM. Leukaemic suppression of BM adipocytes led to imbalanced regulation of endogenous haematopoietic stem and progenitor cells, resulting in impaired myelo-erythroid maturation.
In vivo
administration of PPARγ agonists induced BM adipogenesis, which rescued healthy haematopoietic maturation while repressing leukaemic growth. Our study identifies a previously unappreciated axis between BM adipogenesis and normal myelo-erythroid maturation that is therapeutically accessible to improve symptoms of BM failure in AML via non-cell autonomous targeting of the niche.
Boyd
et al.
monitored the effects of patient-derived acute myeloid leukaemia (AML) cells on human HSPCs
in vivo
and found that AML impairs bone marrow adipocyte differentiation, and this in turn impedes healthy endogenous haematopoiesis.</description><subject>13</subject><subject>631/532/1542</subject><subject>631/532/2118/2074</subject><subject>631/67</subject><subject>631/67/327</subject><subject>Acute myeloid leukemia</subject><subject>Adipocytes</subject><subject>Adipocytes - pathology</subject><subject>Adipogenesis</subject><subject>Adipogenesis - physiology</subject><subject>Adult</subject><subject>Aged</subject><subject>Analysis</subject><subject>Anemia</subject><subject>Animals</subject><subject>Bone marrow</subject><subject>Bone Marrow - metabolism</subject><subject>Bone Marrow - pathology</subject><subject>Bone marrow cells</subject><subject>Bone Marrow Cells - metabolism</subject><subject>Bone Marrow Cells - pathology</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cell culture</subject><subject>Cells (biology)</subject><subject>Coculture Techniques - methods</subject><subject>Developmental Biology</subject><subject>Erythropoiesis</subject><subject>Erythropoiesis - physiology</subject><subject>Failure analysis</subject><subject>Female</subject><subject>Hematopoiesis</subject><subject>Hematopoietic Stem Cells</subject><subject>Humans</subject><subject>Leukemia</subject><subject>Leukemia, Myeloid, Acute - pathology</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Maturation</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>Middle Aged</subject><subject>Patients</subject><subject>PPAR gamma - metabolism</subject><subject>Stem Cells</subject><subject>Stem Cells - pathology</subject><subject>Xenografts</subject><subject>Young Adult</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptktuK1TAUhosozjiKbyAFL9SLjjk2zeVm8DAwIHi4Dmmy2p2xTWrSon17U_bWcQ8SSELyrT9r_VlF8RyjS4xo89abltaEPyjOMRN1xWohH277mleCSnJWPEnpFiHMGBKPizMiEeWUy_Ni2pllhnJcYQjOlgMs3zWMTpfWpbhMcyrB29CDD0s6UBXEdd7HMAUHyaWyXUsTximG0SXn-3LeQ6mtm4JZs3AbfFbXMYafpXdmD0-LR50eEjw7rhfFt_fvvl59rG4-fbi-2t1UhjE6V41EktSkYV3HmLECEyGFINxy2zGNKKtZBy2T0GFiERK2wdwSRBhpGmJ4Qy-K1wfdnNmPBdKscn4GhkF7yLUoLDnmNc9zRl_eQ2_DEn3ObqMaIjll_I7q9QDK-S7MUZtNVO1qSgRjpN6evfwPlYfNrppsRufy-UnAm5OAzMzwa-71kpK6_vL5lH11YE0MKUXo1BRdNndVGKmtD9SxDzL54ljS0o5g_3J_Pv7OnpSvfA_xn5rvaf0GUke4_Q</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Boyd, Allison L.</creator><creator>Reid, Jennifer C.</creator><creator>Salci, Kyle R.</creator><creator>Aslostovar, Lili</creator><creator>Benoit, Yannick D.</creator><creator>Shapovalova, Zoya</creator><creator>Nakanishi, Mio</creator><creator>Porras, Deanna P.</creator><creator>Almakadi, Mohammed</creator><creator>Campbell, Clinton J. V.</creator><creator>Jackson, Michael F.</creator><creator>Ross, Catherine A.</creator><creator>Foley, Ronan</creator><creator>Leber, Brian</creator><creator>Allan, David S.</creator><creator>Sabloff, Mitchell</creator><creator>Xenocostas, Anargyros</creator><creator>Collins, Tony J.</creator><creator>Bhatia, Mickie</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7046-5271</orcidid><orcidid>https://orcid.org/0000-0002-9304-5130</orcidid></search><sort><creationdate>20171101</creationdate><title>Acute myeloid leukaemia disrupts endogenous myelo-erythropoiesis by compromising the adipocyte bone marrow niche</title><author>Boyd, Allison L. ; Reid, Jennifer C. ; Salci, Kyle R. ; Aslostovar, Lili ; Benoit, Yannick D. ; Shapovalova, Zoya ; Nakanishi, Mio ; Porras, Deanna P. ; Almakadi, Mohammed ; Campbell, Clinton J. V. ; Jackson, Michael F. ; Ross, Catherine A. ; Foley, Ronan ; Leber, Brian ; Allan, David S. ; Sabloff, Mitchell ; Xenocostas, Anargyros ; Collins, Tony J. ; Bhatia, Mickie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-890926284ff44cd712797725d5df4a03464feb49ef12d007d815d20242882c583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>13</topic><topic>631/532/1542</topic><topic>631/532/2118/2074</topic><topic>631/67</topic><topic>631/67/327</topic><topic>Acute myeloid leukemia</topic><topic>Adipocytes</topic><topic>Adipocytes - pathology</topic><topic>Adipogenesis</topic><topic>Adipogenesis - physiology</topic><topic>Adult</topic><topic>Aged</topic><topic>Analysis</topic><topic>Anemia</topic><topic>Animals</topic><topic>Bone marrow</topic><topic>Bone Marrow - metabolism</topic><topic>Bone Marrow - pathology</topic><topic>Bone marrow cells</topic><topic>Bone Marrow Cells - metabolism</topic><topic>Bone Marrow Cells - pathology</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cell culture</topic><topic>Cells (biology)</topic><topic>Coculture Techniques - methods</topic><topic>Developmental Biology</topic><topic>Erythropoiesis</topic><topic>Erythropoiesis - physiology</topic><topic>Failure analysis</topic><topic>Female</topic><topic>Hematopoiesis</topic><topic>Hematopoietic Stem Cells</topic><topic>Humans</topic><topic>Leukemia</topic><topic>Leukemia, Myeloid, Acute - pathology</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Maturation</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>Middle Aged</topic><topic>Patients</topic><topic>PPAR gamma - metabolism</topic><topic>Stem Cells</topic><topic>Stem Cells - pathology</topic><topic>Xenografts</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boyd, Allison L.</creatorcontrib><creatorcontrib>Reid, Jennifer C.</creatorcontrib><creatorcontrib>Salci, Kyle R.</creatorcontrib><creatorcontrib>Aslostovar, Lili</creatorcontrib><creatorcontrib>Benoit, Yannick D.</creatorcontrib><creatorcontrib>Shapovalova, Zoya</creatorcontrib><creatorcontrib>Nakanishi, Mio</creatorcontrib><creatorcontrib>Porras, Deanna P.</creatorcontrib><creatorcontrib>Almakadi, Mohammed</creatorcontrib><creatorcontrib>Campbell, Clinton J. V.</creatorcontrib><creatorcontrib>Jackson, Michael F.</creatorcontrib><creatorcontrib>Ross, Catherine A.</creatorcontrib><creatorcontrib>Foley, Ronan</creatorcontrib><creatorcontrib>Leber, Brian</creatorcontrib><creatorcontrib>Allan, David S.</creatorcontrib><creatorcontrib>Sabloff, Mitchell</creatorcontrib><creatorcontrib>Xenocostas, Anargyros</creatorcontrib><creatorcontrib>Collins, Tony J.</creatorcontrib><creatorcontrib>Bhatia, Mickie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boyd, Allison L.</au><au>Reid, Jennifer C.</au><au>Salci, Kyle R.</au><au>Aslostovar, Lili</au><au>Benoit, Yannick D.</au><au>Shapovalova, Zoya</au><au>Nakanishi, Mio</au><au>Porras, Deanna P.</au><au>Almakadi, Mohammed</au><au>Campbell, Clinton J. V.</au><au>Jackson, Michael F.</au><au>Ross, Catherine A.</au><au>Foley, Ronan</au><au>Leber, Brian</au><au>Allan, David S.</au><au>Sabloff, Mitchell</au><au>Xenocostas, Anargyros</au><au>Collins, Tony J.</au><au>Bhatia, Mickie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acute myeloid leukaemia disrupts endogenous myelo-erythropoiesis by compromising the adipocyte bone marrow niche</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>19</volume><issue>11</issue><spage>1336</spage><epage>1347</epage><pages>1336-1347</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>Acute myeloid leukaemia (AML) is distinguished by the generation of dysfunctional leukaemic blasts, and patients characteristically suffer from fatal infections and anaemia due to insufficient normal myelo-erythropoiesis. Direct physical crowding of bone marrow (BM) by accumulating leukaemic cells does not fully account for this haematopoietic failure. Here, analyses from AML patients were applied to both
in vitro
co-culture platforms and
in vivo
xenograft modelling, revealing that human AML disease specifically disrupts the adipocytic niche in BM. Leukaemic suppression of BM adipocytes led to imbalanced regulation of endogenous haematopoietic stem and progenitor cells, resulting in impaired myelo-erythroid maturation.
In vivo
administration of PPARγ agonists induced BM adipogenesis, which rescued healthy haematopoietic maturation while repressing leukaemic growth. Our study identifies a previously unappreciated axis between BM adipogenesis and normal myelo-erythroid maturation that is therapeutically accessible to improve symptoms of BM failure in AML via non-cell autonomous targeting of the niche.
Boyd
et al.
monitored the effects of patient-derived acute myeloid leukaemia (AML) cells on human HSPCs
in vivo
and found that AML impairs bone marrow adipocyte differentiation, and this in turn impedes healthy endogenous haematopoiesis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29035359</pmid><doi>10.1038/ncb3625</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7046-5271</orcidid><orcidid>https://orcid.org/0000-0002-9304-5130</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1465-7392 |
ispartof | Nature cell biology, 2017-11, Vol.19 (11), p.1336-1347 |
issn | 1465-7392 1476-4679 |
language | eng |
recordid | cdi_proquest_miscellaneous_1951565951 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 13 631/532/1542 631/532/2118/2074 631/67 631/67/327 Acute myeloid leukemia Adipocytes Adipocytes - pathology Adipogenesis Adipogenesis - physiology Adult Aged Analysis Anemia Animals Bone marrow Bone Marrow - metabolism Bone Marrow - pathology Bone marrow cells Bone Marrow Cells - metabolism Bone Marrow Cells - pathology Cancer Research Cell Biology Cell culture Cells (biology) Coculture Techniques - methods Developmental Biology Erythropoiesis Erythropoiesis - physiology Failure analysis Female Hematopoiesis Hematopoietic Stem Cells Humans Leukemia Leukemia, Myeloid, Acute - pathology Life Sciences Male Maturation Mice Mice, Inbred NOD Middle Aged Patients PPAR gamma - metabolism Stem Cells Stem Cells - pathology Xenografts Young Adult |
title | Acute myeloid leukaemia disrupts endogenous myelo-erythropoiesis by compromising the adipocyte bone marrow niche |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A45%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acute%20myeloid%20leukaemia%20disrupts%20endogenous%20myelo-erythropoiesis%20by%20compromising%20the%20adipocyte%20bone%20marrow%20niche&rft.jtitle=Nature%20cell%20biology&rft.au=Boyd,%20Allison%20L.&rft.date=2017-11-01&rft.volume=19&rft.issue=11&rft.spage=1336&rft.epage=1347&rft.pages=1336-1347&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/ncb3625&rft_dat=%3Cgale_proqu%3EA632744268%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1958295345&rft_id=info:pmid/29035359&rft_galeid=A632744268&rfr_iscdi=true |