Microbial Fermentation of Organic Carbon Substrates Drives Rapid pH Neutralization and Element Removal in Bauxite Residue Leachate

Globally, mineral processing activities produce an estimated 680 GL/yr of alkaline wastewater. Neutralizing pH and removing dissolved elements are the main goals of wastewater treatment prior to discharge. Here, we present the first study to explicitly evaluate the role of microbial communities in d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2017-11, Vol.51 (21), p.12592-12601
Hauptverfasser: Santini, Talitha C., Peng, Yong G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12601
container_issue 21
container_start_page 12592
container_title Environmental science & technology
container_volume 51
creator Santini, Talitha C.
Peng, Yong G.
description Globally, mineral processing activities produce an estimated 680 GL/yr of alkaline wastewater. Neutralizing pH and removing dissolved elements are the main goals of wastewater treatment prior to discharge. Here, we present the first study to explicitly evaluate the role of microbial communities in driving pH neutralization and element removal in alkaline wastewaters by fermentation of organic carbon, using bauxite residue leachate as a model system, and evaluate the effects of organic carbon complexity and microbial inoculum addition rates on the performance of these treatment systems at laboratory scale. Rates and extents of pH neutralization were higher in bioreactors fed with simpler organic carbon substrates (glucose and banana: 6 days to reach pH ≤ 8) than those fed with more complex organic carbon substrates (eucalyptus mulch: 15 days to reach pH ≤ 8; woodchips: equilibrium pH around 9). Concentrations of dissolved Al, As, B, Mo, Na, S, and V all significantly decreased after bioremediation. Increasing soil inoculant addition rate accelerated rates and extent of pH neutralization and element removal up to 0.1 wt %; further increases had little effect. Overall, glucose added at 1.8 wt % and soil inoculum added at 0.1 wt % provided the most effective minimal combination of carbon substrate and inoculum to drive pH neutralization and element removal.
doi_str_mv 10.1021/acs.est.7b02844
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1951563855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1985130418</sourcerecordid><originalsourceid>FETCH-LOGICAL-a398t-c3296eae99f5e225334fa7f148bfbf0fa043c68863701322ce583d9c406254de3</originalsourceid><addsrcrecordid>eNp1kc2LFDEQxYMo7rh69iYBL4L0bCXpdCdHHXddYXRhVfDWVKcrmqU_xqR7UY_-5WaYUUHwVFD5vZfkPcYeC1gLkOIMXVpTmtd1C9KU5R22ElpCoY0Wd9kKQKjCqurTCXuQ0g0ASAXmPjuRFmRdW1ixn2-Di1MbsOcXFAcaZ5zDNPLJ86v4Gcfg-AZjmzfvlzbNEWdK_FUMt3lc4y50fHfJ39GST_rw46DFsePnPe3N-DUN0202DyN_icu3MFNepdAtxLeE7kv2e8jueewTPTrOU_bx4vzD5rLYXr1-s3mxLVBZMxdOSVsRkrVek5RaqdJj7UVpWt968AilcpUxlarzt6V0pI3qrCuhkrrsSJ2yZwffXZy-Ljm1ZgjJUd_jSNOSGmG10JUyWmf06T_ozbTEMb8uUzlbBaUwmTo7UDnBlCL5ZhfDgPF7I6DZ19Pkepq9-lhPVjw5-i7tQN0f_ncfGXh-APbKv3f-x-4XZd2bfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1985130418</pqid></control><display><type>article</type><title>Microbial Fermentation of Organic Carbon Substrates Drives Rapid pH Neutralization and Element Removal in Bauxite Residue Leachate</title><source>ACS Publications</source><source>MEDLINE</source><creator>Santini, Talitha C. ; Peng, Yong G.</creator><creatorcontrib>Santini, Talitha C. ; Peng, Yong G.</creatorcontrib><description>Globally, mineral processing activities produce an estimated 680 GL/yr of alkaline wastewater. Neutralizing pH and removing dissolved elements are the main goals of wastewater treatment prior to discharge. Here, we present the first study to explicitly evaluate the role of microbial communities in driving pH neutralization and element removal in alkaline wastewaters by fermentation of organic carbon, using bauxite residue leachate as a model system, and evaluate the effects of organic carbon complexity and microbial inoculum addition rates on the performance of these treatment systems at laboratory scale. Rates and extents of pH neutralization were higher in bioreactors fed with simpler organic carbon substrates (glucose and banana: 6 days to reach pH ≤ 8) than those fed with more complex organic carbon substrates (eucalyptus mulch: 15 days to reach pH ≤ 8; woodchips: equilibrium pH around 9). Concentrations of dissolved Al, As, B, Mo, Na, S, and V all significantly decreased after bioremediation. Increasing soil inoculant addition rate accelerated rates and extent of pH neutralization and element removal up to 0.1 wt %; further increases had little effect. Overall, glucose added at 1.8 wt % and soil inoculum added at 0.1 wt % provided the most effective minimal combination of carbon substrate and inoculum to drive pH neutralization and element removal.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.7b02844</identifier><identifier>PMID: 29027790</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Alkaline wastes ; Alkalinity ; Aluminum base alloys ; Aluminum Oxide ; Bauxite ; Bayer process ; Biodegradation, Environmental ; Bioreactors ; Bioremediation ; Carbon ; Complexity ; Eucalyptus ; Fermentation ; Glucose ; Hydrogen ions ; Inoculum ; Leachates ; Microbial activity ; Microorganisms ; Mineral processing ; Neutralization ; Organic carbon ; pH effects ; Studies ; Substrates ; Wastewater discharges ; Wastewater treatment</subject><ispartof>Environmental science &amp; technology, 2017-11, Vol.51 (21), p.12592-12601</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 7, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a398t-c3296eae99f5e225334fa7f148bfbf0fa043c68863701322ce583d9c406254de3</citedby><cites>FETCH-LOGICAL-a398t-c3296eae99f5e225334fa7f148bfbf0fa043c68863701322ce583d9c406254de3</cites><orcidid>0000-0002-6396-3731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.7b02844$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.7b02844$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29027790$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santini, Talitha C.</creatorcontrib><creatorcontrib>Peng, Yong G.</creatorcontrib><title>Microbial Fermentation of Organic Carbon Substrates Drives Rapid pH Neutralization and Element Removal in Bauxite Residue Leachate</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Globally, mineral processing activities produce an estimated 680 GL/yr of alkaline wastewater. Neutralizing pH and removing dissolved elements are the main goals of wastewater treatment prior to discharge. Here, we present the first study to explicitly evaluate the role of microbial communities in driving pH neutralization and element removal in alkaline wastewaters by fermentation of organic carbon, using bauxite residue leachate as a model system, and evaluate the effects of organic carbon complexity and microbial inoculum addition rates on the performance of these treatment systems at laboratory scale. Rates and extents of pH neutralization were higher in bioreactors fed with simpler organic carbon substrates (glucose and banana: 6 days to reach pH ≤ 8) than those fed with more complex organic carbon substrates (eucalyptus mulch: 15 days to reach pH ≤ 8; woodchips: equilibrium pH around 9). Concentrations of dissolved Al, As, B, Mo, Na, S, and V all significantly decreased after bioremediation. Increasing soil inoculant addition rate accelerated rates and extent of pH neutralization and element removal up to 0.1 wt %; further increases had little effect. Overall, glucose added at 1.8 wt % and soil inoculum added at 0.1 wt % provided the most effective minimal combination of carbon substrate and inoculum to drive pH neutralization and element removal.</description><subject>Alkaline wastes</subject><subject>Alkalinity</subject><subject>Aluminum base alloys</subject><subject>Aluminum Oxide</subject><subject>Bauxite</subject><subject>Bayer process</subject><subject>Biodegradation, Environmental</subject><subject>Bioreactors</subject><subject>Bioremediation</subject><subject>Carbon</subject><subject>Complexity</subject><subject>Eucalyptus</subject><subject>Fermentation</subject><subject>Glucose</subject><subject>Hydrogen ions</subject><subject>Inoculum</subject><subject>Leachates</subject><subject>Microbial activity</subject><subject>Microorganisms</subject><subject>Mineral processing</subject><subject>Neutralization</subject><subject>Organic carbon</subject><subject>pH effects</subject><subject>Studies</subject><subject>Substrates</subject><subject>Wastewater discharges</subject><subject>Wastewater treatment</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc2LFDEQxYMo7rh69iYBL4L0bCXpdCdHHXddYXRhVfDWVKcrmqU_xqR7UY_-5WaYUUHwVFD5vZfkPcYeC1gLkOIMXVpTmtd1C9KU5R22ElpCoY0Wd9kKQKjCqurTCXuQ0g0ASAXmPjuRFmRdW1ixn2-Di1MbsOcXFAcaZ5zDNPLJ86v4Gcfg-AZjmzfvlzbNEWdK_FUMt3lc4y50fHfJ39GST_rw46DFsePnPe3N-DUN0202DyN_icu3MFNepdAtxLeE7kv2e8jueewTPTrOU_bx4vzD5rLYXr1-s3mxLVBZMxdOSVsRkrVek5RaqdJj7UVpWt968AilcpUxlarzt6V0pI3qrCuhkrrsSJ2yZwffXZy-Ljm1ZgjJUd_jSNOSGmG10JUyWmf06T_ozbTEMb8uUzlbBaUwmTo7UDnBlCL5ZhfDgPF7I6DZ19Pkepq9-lhPVjw5-i7tQN0f_ncfGXh-APbKv3f-x-4XZd2bfA</recordid><startdate>20171107</startdate><enddate>20171107</enddate><creator>Santini, Talitha C.</creator><creator>Peng, Yong G.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6396-3731</orcidid></search><sort><creationdate>20171107</creationdate><title>Microbial Fermentation of Organic Carbon Substrates Drives Rapid pH Neutralization and Element Removal in Bauxite Residue Leachate</title><author>Santini, Talitha C. ; Peng, Yong G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a398t-c3296eae99f5e225334fa7f148bfbf0fa043c68863701322ce583d9c406254de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alkaline wastes</topic><topic>Alkalinity</topic><topic>Aluminum base alloys</topic><topic>Aluminum Oxide</topic><topic>Bauxite</topic><topic>Bayer process</topic><topic>Biodegradation, Environmental</topic><topic>Bioreactors</topic><topic>Bioremediation</topic><topic>Carbon</topic><topic>Complexity</topic><topic>Eucalyptus</topic><topic>Fermentation</topic><topic>Glucose</topic><topic>Hydrogen ions</topic><topic>Inoculum</topic><topic>Leachates</topic><topic>Microbial activity</topic><topic>Microorganisms</topic><topic>Mineral processing</topic><topic>Neutralization</topic><topic>Organic carbon</topic><topic>pH effects</topic><topic>Studies</topic><topic>Substrates</topic><topic>Wastewater discharges</topic><topic>Wastewater treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santini, Talitha C.</creatorcontrib><creatorcontrib>Peng, Yong G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santini, Talitha C.</au><au>Peng, Yong G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial Fermentation of Organic Carbon Substrates Drives Rapid pH Neutralization and Element Removal in Bauxite Residue Leachate</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2017-11-07</date><risdate>2017</risdate><volume>51</volume><issue>21</issue><spage>12592</spage><epage>12601</epage><pages>12592-12601</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Globally, mineral processing activities produce an estimated 680 GL/yr of alkaline wastewater. Neutralizing pH and removing dissolved elements are the main goals of wastewater treatment prior to discharge. Here, we present the first study to explicitly evaluate the role of microbial communities in driving pH neutralization and element removal in alkaline wastewaters by fermentation of organic carbon, using bauxite residue leachate as a model system, and evaluate the effects of organic carbon complexity and microbial inoculum addition rates on the performance of these treatment systems at laboratory scale. Rates and extents of pH neutralization were higher in bioreactors fed with simpler organic carbon substrates (glucose and banana: 6 days to reach pH ≤ 8) than those fed with more complex organic carbon substrates (eucalyptus mulch: 15 days to reach pH ≤ 8; woodchips: equilibrium pH around 9). Concentrations of dissolved Al, As, B, Mo, Na, S, and V all significantly decreased after bioremediation. Increasing soil inoculant addition rate accelerated rates and extent of pH neutralization and element removal up to 0.1 wt %; further increases had little effect. Overall, glucose added at 1.8 wt % and soil inoculum added at 0.1 wt % provided the most effective minimal combination of carbon substrate and inoculum to drive pH neutralization and element removal.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29027790</pmid><doi>10.1021/acs.est.7b02844</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6396-3731</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2017-11, Vol.51 (21), p.12592-12601
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_1951563855
source ACS Publications; MEDLINE
subjects Alkaline wastes
Alkalinity
Aluminum base alloys
Aluminum Oxide
Bauxite
Bayer process
Biodegradation, Environmental
Bioreactors
Bioremediation
Carbon
Complexity
Eucalyptus
Fermentation
Glucose
Hydrogen ions
Inoculum
Leachates
Microbial activity
Microorganisms
Mineral processing
Neutralization
Organic carbon
pH effects
Studies
Substrates
Wastewater discharges
Wastewater treatment
title Microbial Fermentation of Organic Carbon Substrates Drives Rapid pH Neutralization and Element Removal in Bauxite Residue Leachate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A07%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20Fermentation%20of%20Organic%20Carbon%20Substrates%20Drives%20Rapid%20pH%20Neutralization%20and%20Element%20Removal%20in%20Bauxite%20Residue%20Leachate&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Santini,%20Talitha%20C.&rft.date=2017-11-07&rft.volume=51&rft.issue=21&rft.spage=12592&rft.epage=12601&rft.pages=12592-12601&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.7b02844&rft_dat=%3Cproquest_cross%3E1985130418%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1985130418&rft_id=info:pmid/29027790&rfr_iscdi=true