Microbial Fermentation of Organic Carbon Substrates Drives Rapid pH Neutralization and Element Removal in Bauxite Residue Leachate
Globally, mineral processing activities produce an estimated 680 GL/yr of alkaline wastewater. Neutralizing pH and removing dissolved elements are the main goals of wastewater treatment prior to discharge. Here, we present the first study to explicitly evaluate the role of microbial communities in d...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2017-11, Vol.51 (21), p.12592-12601 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12601 |
---|---|
container_issue | 21 |
container_start_page | 12592 |
container_title | Environmental science & technology |
container_volume | 51 |
creator | Santini, Talitha C. Peng, Yong G. |
description | Globally, mineral processing activities produce an estimated 680 GL/yr of alkaline wastewater. Neutralizing pH and removing dissolved elements are the main goals of wastewater treatment prior to discharge. Here, we present the first study to explicitly evaluate the role of microbial communities in driving pH neutralization and element removal in alkaline wastewaters by fermentation of organic carbon, using bauxite residue leachate as a model system, and evaluate the effects of organic carbon complexity and microbial inoculum addition rates on the performance of these treatment systems at laboratory scale. Rates and extents of pH neutralization were higher in bioreactors fed with simpler organic carbon substrates (glucose and banana: 6 days to reach pH ≤ 8) than those fed with more complex organic carbon substrates (eucalyptus mulch: 15 days to reach pH ≤ 8; woodchips: equilibrium pH around 9). Concentrations of dissolved Al, As, B, Mo, Na, S, and V all significantly decreased after bioremediation. Increasing soil inoculant addition rate accelerated rates and extent of pH neutralization and element removal up to 0.1 wt %; further increases had little effect. Overall, glucose added at 1.8 wt % and soil inoculum added at 0.1 wt % provided the most effective minimal combination of carbon substrate and inoculum to drive pH neutralization and element removal. |
doi_str_mv | 10.1021/acs.est.7b02844 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1951563855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1985130418</sourcerecordid><originalsourceid>FETCH-LOGICAL-a398t-c3296eae99f5e225334fa7f148bfbf0fa043c68863701322ce583d9c406254de3</originalsourceid><addsrcrecordid>eNp1kc2LFDEQxYMo7rh69iYBL4L0bCXpdCdHHXddYXRhVfDWVKcrmqU_xqR7UY_-5WaYUUHwVFD5vZfkPcYeC1gLkOIMXVpTmtd1C9KU5R22ElpCoY0Wd9kKQKjCqurTCXuQ0g0ASAXmPjuRFmRdW1ixn2-Di1MbsOcXFAcaZ5zDNPLJ86v4Gcfg-AZjmzfvlzbNEWdK_FUMt3lc4y50fHfJ39GST_rw46DFsePnPe3N-DUN0202DyN_icu3MFNepdAtxLeE7kv2e8jueewTPTrOU_bx4vzD5rLYXr1-s3mxLVBZMxdOSVsRkrVek5RaqdJj7UVpWt968AilcpUxlarzt6V0pI3qrCuhkrrsSJ2yZwffXZy-Ljm1ZgjJUd_jSNOSGmG10JUyWmf06T_ozbTEMb8uUzlbBaUwmTo7UDnBlCL5ZhfDgPF7I6DZ19Pkepq9-lhPVjw5-i7tQN0f_ncfGXh-APbKv3f-x-4XZd2bfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1985130418</pqid></control><display><type>article</type><title>Microbial Fermentation of Organic Carbon Substrates Drives Rapid pH Neutralization and Element Removal in Bauxite Residue Leachate</title><source>ACS Publications</source><source>MEDLINE</source><creator>Santini, Talitha C. ; Peng, Yong G.</creator><creatorcontrib>Santini, Talitha C. ; Peng, Yong G.</creatorcontrib><description>Globally, mineral processing activities produce an estimated 680 GL/yr of alkaline wastewater. Neutralizing pH and removing dissolved elements are the main goals of wastewater treatment prior to discharge. Here, we present the first study to explicitly evaluate the role of microbial communities in driving pH neutralization and element removal in alkaline wastewaters by fermentation of organic carbon, using bauxite residue leachate as a model system, and evaluate the effects of organic carbon complexity and microbial inoculum addition rates on the performance of these treatment systems at laboratory scale. Rates and extents of pH neutralization were higher in bioreactors fed with simpler organic carbon substrates (glucose and banana: 6 days to reach pH ≤ 8) than those fed with more complex organic carbon substrates (eucalyptus mulch: 15 days to reach pH ≤ 8; woodchips: equilibrium pH around 9). Concentrations of dissolved Al, As, B, Mo, Na, S, and V all significantly decreased after bioremediation. Increasing soil inoculant addition rate accelerated rates and extent of pH neutralization and element removal up to 0.1 wt %; further increases had little effect. Overall, glucose added at 1.8 wt % and soil inoculum added at 0.1 wt % provided the most effective minimal combination of carbon substrate and inoculum to drive pH neutralization and element removal.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.7b02844</identifier><identifier>PMID: 29027790</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Alkaline wastes ; Alkalinity ; Aluminum base alloys ; Aluminum Oxide ; Bauxite ; Bayer process ; Biodegradation, Environmental ; Bioreactors ; Bioremediation ; Carbon ; Complexity ; Eucalyptus ; Fermentation ; Glucose ; Hydrogen ions ; Inoculum ; Leachates ; Microbial activity ; Microorganisms ; Mineral processing ; Neutralization ; Organic carbon ; pH effects ; Studies ; Substrates ; Wastewater discharges ; Wastewater treatment</subject><ispartof>Environmental science & technology, 2017-11, Vol.51 (21), p.12592-12601</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 7, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a398t-c3296eae99f5e225334fa7f148bfbf0fa043c68863701322ce583d9c406254de3</citedby><cites>FETCH-LOGICAL-a398t-c3296eae99f5e225334fa7f148bfbf0fa043c68863701322ce583d9c406254de3</cites><orcidid>0000-0002-6396-3731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.7b02844$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.7b02844$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29027790$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santini, Talitha C.</creatorcontrib><creatorcontrib>Peng, Yong G.</creatorcontrib><title>Microbial Fermentation of Organic Carbon Substrates Drives Rapid pH Neutralization and Element Removal in Bauxite Residue Leachate</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Globally, mineral processing activities produce an estimated 680 GL/yr of alkaline wastewater. Neutralizing pH and removing dissolved elements are the main goals of wastewater treatment prior to discharge. Here, we present the first study to explicitly evaluate the role of microbial communities in driving pH neutralization and element removal in alkaline wastewaters by fermentation of organic carbon, using bauxite residue leachate as a model system, and evaluate the effects of organic carbon complexity and microbial inoculum addition rates on the performance of these treatment systems at laboratory scale. Rates and extents of pH neutralization were higher in bioreactors fed with simpler organic carbon substrates (glucose and banana: 6 days to reach pH ≤ 8) than those fed with more complex organic carbon substrates (eucalyptus mulch: 15 days to reach pH ≤ 8; woodchips: equilibrium pH around 9). Concentrations of dissolved Al, As, B, Mo, Na, S, and V all significantly decreased after bioremediation. Increasing soil inoculant addition rate accelerated rates and extent of pH neutralization and element removal up to 0.1 wt %; further increases had little effect. Overall, glucose added at 1.8 wt % and soil inoculum added at 0.1 wt % provided the most effective minimal combination of carbon substrate and inoculum to drive pH neutralization and element removal.</description><subject>Alkaline wastes</subject><subject>Alkalinity</subject><subject>Aluminum base alloys</subject><subject>Aluminum Oxide</subject><subject>Bauxite</subject><subject>Bayer process</subject><subject>Biodegradation, Environmental</subject><subject>Bioreactors</subject><subject>Bioremediation</subject><subject>Carbon</subject><subject>Complexity</subject><subject>Eucalyptus</subject><subject>Fermentation</subject><subject>Glucose</subject><subject>Hydrogen ions</subject><subject>Inoculum</subject><subject>Leachates</subject><subject>Microbial activity</subject><subject>Microorganisms</subject><subject>Mineral processing</subject><subject>Neutralization</subject><subject>Organic carbon</subject><subject>pH effects</subject><subject>Studies</subject><subject>Substrates</subject><subject>Wastewater discharges</subject><subject>Wastewater treatment</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc2LFDEQxYMo7rh69iYBL4L0bCXpdCdHHXddYXRhVfDWVKcrmqU_xqR7UY_-5WaYUUHwVFD5vZfkPcYeC1gLkOIMXVpTmtd1C9KU5R22ElpCoY0Wd9kKQKjCqurTCXuQ0g0ASAXmPjuRFmRdW1ixn2-Di1MbsOcXFAcaZ5zDNPLJ86v4Gcfg-AZjmzfvlzbNEWdK_FUMt3lc4y50fHfJ39GST_rw46DFsePnPe3N-DUN0202DyN_icu3MFNepdAtxLeE7kv2e8jueewTPTrOU_bx4vzD5rLYXr1-s3mxLVBZMxdOSVsRkrVek5RaqdJj7UVpWt968AilcpUxlarzt6V0pI3qrCuhkrrsSJ2yZwffXZy-Ljm1ZgjJUd_jSNOSGmG10JUyWmf06T_ozbTEMb8uUzlbBaUwmTo7UDnBlCL5ZhfDgPF7I6DZ19Pkepq9-lhPVjw5-i7tQN0f_ncfGXh-APbKv3f-x-4XZd2bfA</recordid><startdate>20171107</startdate><enddate>20171107</enddate><creator>Santini, Talitha C.</creator><creator>Peng, Yong G.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6396-3731</orcidid></search><sort><creationdate>20171107</creationdate><title>Microbial Fermentation of Organic Carbon Substrates Drives Rapid pH Neutralization and Element Removal in Bauxite Residue Leachate</title><author>Santini, Talitha C. ; Peng, Yong G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a398t-c3296eae99f5e225334fa7f148bfbf0fa043c68863701322ce583d9c406254de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alkaline wastes</topic><topic>Alkalinity</topic><topic>Aluminum base alloys</topic><topic>Aluminum Oxide</topic><topic>Bauxite</topic><topic>Bayer process</topic><topic>Biodegradation, Environmental</topic><topic>Bioreactors</topic><topic>Bioremediation</topic><topic>Carbon</topic><topic>Complexity</topic><topic>Eucalyptus</topic><topic>Fermentation</topic><topic>Glucose</topic><topic>Hydrogen ions</topic><topic>Inoculum</topic><topic>Leachates</topic><topic>Microbial activity</topic><topic>Microorganisms</topic><topic>Mineral processing</topic><topic>Neutralization</topic><topic>Organic carbon</topic><topic>pH effects</topic><topic>Studies</topic><topic>Substrates</topic><topic>Wastewater discharges</topic><topic>Wastewater treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santini, Talitha C.</creatorcontrib><creatorcontrib>Peng, Yong G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santini, Talitha C.</au><au>Peng, Yong G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial Fermentation of Organic Carbon Substrates Drives Rapid pH Neutralization and Element Removal in Bauxite Residue Leachate</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2017-11-07</date><risdate>2017</risdate><volume>51</volume><issue>21</issue><spage>12592</spage><epage>12601</epage><pages>12592-12601</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Globally, mineral processing activities produce an estimated 680 GL/yr of alkaline wastewater. Neutralizing pH and removing dissolved elements are the main goals of wastewater treatment prior to discharge. Here, we present the first study to explicitly evaluate the role of microbial communities in driving pH neutralization and element removal in alkaline wastewaters by fermentation of organic carbon, using bauxite residue leachate as a model system, and evaluate the effects of organic carbon complexity and microbial inoculum addition rates on the performance of these treatment systems at laboratory scale. Rates and extents of pH neutralization were higher in bioreactors fed with simpler organic carbon substrates (glucose and banana: 6 days to reach pH ≤ 8) than those fed with more complex organic carbon substrates (eucalyptus mulch: 15 days to reach pH ≤ 8; woodchips: equilibrium pH around 9). Concentrations of dissolved Al, As, B, Mo, Na, S, and V all significantly decreased after bioremediation. Increasing soil inoculant addition rate accelerated rates and extent of pH neutralization and element removal up to 0.1 wt %; further increases had little effect. Overall, glucose added at 1.8 wt % and soil inoculum added at 0.1 wt % provided the most effective minimal combination of carbon substrate and inoculum to drive pH neutralization and element removal.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29027790</pmid><doi>10.1021/acs.est.7b02844</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6396-3731</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2017-11, Vol.51 (21), p.12592-12601 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_1951563855 |
source | ACS Publications; MEDLINE |
subjects | Alkaline wastes Alkalinity Aluminum base alloys Aluminum Oxide Bauxite Bayer process Biodegradation, Environmental Bioreactors Bioremediation Carbon Complexity Eucalyptus Fermentation Glucose Hydrogen ions Inoculum Leachates Microbial activity Microorganisms Mineral processing Neutralization Organic carbon pH effects Studies Substrates Wastewater discharges Wastewater treatment |
title | Microbial Fermentation of Organic Carbon Substrates Drives Rapid pH Neutralization and Element Removal in Bauxite Residue Leachate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A07%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20Fermentation%20of%20Organic%20Carbon%20Substrates%20Drives%20Rapid%20pH%20Neutralization%20and%20Element%20Removal%20in%20Bauxite%20Residue%20Leachate&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Santini,%20Talitha%20C.&rft.date=2017-11-07&rft.volume=51&rft.issue=21&rft.spage=12592&rft.epage=12601&rft.pages=12592-12601&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.7b02844&rft_dat=%3Cproquest_cross%3E1985130418%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1985130418&rft_id=info:pmid/29027790&rfr_iscdi=true |