Phrenic motoneurons: output elements of a highly organized intraspinal network
pontomedullary respiratory network generates the respiratory pattern and relays it to bulbar and spinal respiratory motor outputs. The phrenic motor system controlling diaphragm contraction receives and processes descending commands to produce orderly, synchronous, and cycle-to-cycle-reproducible sp...
Gespeichert in:
Veröffentlicht in: | Journal of neurophysiology 2018-03, Vol.119 (3), p.1057-1070 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1070 |
---|---|
container_issue | 3 |
container_start_page | 1057 |
container_title | Journal of neurophysiology |
container_volume | 119 |
creator | Ghali, Michael George Zaki |
description | pontomedullary respiratory network generates the respiratory pattern and relays it to bulbar and spinal respiratory motor outputs. The phrenic motor system controlling diaphragm contraction receives and processes descending commands to produce orderly, synchronous, and cycle-to-cycle-reproducible spatiotemporal firing. Multiple investigators have studied phrenic motoneurons (PhMNs) in an attempt to shed light on local mechanisms underlying phrenic pattern formation. I and colleagues (Marchenko V, Ghali MG, Rogers RF. Am J Physiol Regul Integr Comp Physiol 308: R916-R926, 2015.) recorded PhMNs in unanesthetized, decerebrate rats and related their activity to simultaneous phrenic nerve (PhN) activity by creating a time-frequency representation of PhMN-PhN power and coherence. On the basis of their temporal firing patterns and relationship to PhN activity, we categorized PhMNs into three classes, each of which emerges as a result of intrinsic biophysical and network properties and organizes the orderly contraction of diaphragm motor fibers. For example, early inspiratory diaphragmatic activation by the early coherent burst generated by high-frequency PhMNs may be necessary to prime it to overcome its initial inertia. We have also demonstrated the existence of a prominent role for local intraspinal inhibitory mechanisms in shaping phrenic pattern formation. The objective of this review is to relate and synthesize recent findings with those of previous studies with the aim of demonstrating that the phrenic nucleus is a region of active local processing, rather than a passive relay of descending inputs. |
doi_str_mv | 10.1152/jn.00705.2015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1950415258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1950415258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-4577b68d074b26de7b72bba3b7c381d8d87c967aa1452f1d29318515b4d8a8d73</originalsourceid><addsrcrecordid>eNo9kDtPwzAAhC0EoqUwsiKPLCl-xLXDhqrykCpggNmyY6dNSexgO0Ll15PSwnSn06cbPgAuMZpizMjNxk0R4ohNCcLsCIyHjWSYFeIYjBEaOkWcj8BZjBs0gAyRUzAiBSKYFnQMnl_Xwbq6hK1P3tk-eBdvoe9T1ydoG9talyL0FVRwXa_WzRb6sFKu_rYG1i4FFbvaqQY6m758-DgHJ5Vqor045AS83y_e5o_Z8uXhaX63zEpKScpyxrmeCYN4rsnMWK450VpRzUsqsBFG8LKYcaVwzkiFDSkoFgwznRuhhOF0Aq73v13wn72NSbZ1LG3TKGd9HyUuGMoHFUwMaLZHy-BjDLaSXahbFbYSI7lTKDdO_iqUO4UDf3W47nVrzT_954z-ADg0bHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1950415258</pqid></control><display><type>article</type><title>Phrenic motoneurons: output elements of a highly organized intraspinal network</title><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Ghali, Michael George Zaki</creator><creatorcontrib>Ghali, Michael George Zaki</creatorcontrib><description>pontomedullary respiratory network generates the respiratory pattern and relays it to bulbar and spinal respiratory motor outputs. The phrenic motor system controlling diaphragm contraction receives and processes descending commands to produce orderly, synchronous, and cycle-to-cycle-reproducible spatiotemporal firing. Multiple investigators have studied phrenic motoneurons (PhMNs) in an attempt to shed light on local mechanisms underlying phrenic pattern formation. I and colleagues (Marchenko V, Ghali MG, Rogers RF. Am J Physiol Regul Integr Comp Physiol 308: R916-R926, 2015.) recorded PhMNs in unanesthetized, decerebrate rats and related their activity to simultaneous phrenic nerve (PhN) activity by creating a time-frequency representation of PhMN-PhN power and coherence. On the basis of their temporal firing patterns and relationship to PhN activity, we categorized PhMNs into three classes, each of which emerges as a result of intrinsic biophysical and network properties and organizes the orderly contraction of diaphragm motor fibers. For example, early inspiratory diaphragmatic activation by the early coherent burst generated by high-frequency PhMNs may be necessary to prime it to overcome its initial inertia. We have also demonstrated the existence of a prominent role for local intraspinal inhibitory mechanisms in shaping phrenic pattern formation. The objective of this review is to relate and synthesize recent findings with those of previous studies with the aim of demonstrating that the phrenic nucleus is a region of active local processing, rather than a passive relay of descending inputs.</description><identifier>ISSN: 0022-3077</identifier><identifier>EISSN: 1522-1598</identifier><identifier>DOI: 10.1152/jn.00705.2015</identifier><identifier>PMID: 29021393</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of neurophysiology, 2018-03, Vol.119 (3), p.1057-1070</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-4577b68d074b26de7b72bba3b7c381d8d87c967aa1452f1d29318515b4d8a8d73</citedby><cites>FETCH-LOGICAL-c332t-4577b68d074b26de7b72bba3b7c381d8d87c967aa1452f1d29318515b4d8a8d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3039,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29021393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghali, Michael George Zaki</creatorcontrib><title>Phrenic motoneurons: output elements of a highly organized intraspinal network</title><title>Journal of neurophysiology</title><addtitle>J Neurophysiol</addtitle><description>pontomedullary respiratory network generates the respiratory pattern and relays it to bulbar and spinal respiratory motor outputs. The phrenic motor system controlling diaphragm contraction receives and processes descending commands to produce orderly, synchronous, and cycle-to-cycle-reproducible spatiotemporal firing. Multiple investigators have studied phrenic motoneurons (PhMNs) in an attempt to shed light on local mechanisms underlying phrenic pattern formation. I and colleagues (Marchenko V, Ghali MG, Rogers RF. Am J Physiol Regul Integr Comp Physiol 308: R916-R926, 2015.) recorded PhMNs in unanesthetized, decerebrate rats and related their activity to simultaneous phrenic nerve (PhN) activity by creating a time-frequency representation of PhMN-PhN power and coherence. On the basis of their temporal firing patterns and relationship to PhN activity, we categorized PhMNs into three classes, each of which emerges as a result of intrinsic biophysical and network properties and organizes the orderly contraction of diaphragm motor fibers. For example, early inspiratory diaphragmatic activation by the early coherent burst generated by high-frequency PhMNs may be necessary to prime it to overcome its initial inertia. We have also demonstrated the existence of a prominent role for local intraspinal inhibitory mechanisms in shaping phrenic pattern formation. The objective of this review is to relate and synthesize recent findings with those of previous studies with the aim of demonstrating that the phrenic nucleus is a region of active local processing, rather than a passive relay of descending inputs.</description><issn>0022-3077</issn><issn>1522-1598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kDtPwzAAhC0EoqUwsiKPLCl-xLXDhqrykCpggNmyY6dNSexgO0Ll15PSwnSn06cbPgAuMZpizMjNxk0R4ohNCcLsCIyHjWSYFeIYjBEaOkWcj8BZjBs0gAyRUzAiBSKYFnQMnl_Xwbq6hK1P3tk-eBdvoe9T1ydoG9talyL0FVRwXa_WzRb6sFKu_rYG1i4FFbvaqQY6m758-DgHJ5Vqor045AS83y_e5o_Z8uXhaX63zEpKScpyxrmeCYN4rsnMWK450VpRzUsqsBFG8LKYcaVwzkiFDSkoFgwznRuhhOF0Aq73v13wn72NSbZ1LG3TKGd9HyUuGMoHFUwMaLZHy-BjDLaSXahbFbYSI7lTKDdO_iqUO4UDf3W47nVrzT_954z-ADg0bHg</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Ghali, Michael George Zaki</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20180301</creationdate><title>Phrenic motoneurons: output elements of a highly organized intraspinal network</title><author>Ghali, Michael George Zaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-4577b68d074b26de7b72bba3b7c381d8d87c967aa1452f1d29318515b4d8a8d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghali, Michael George Zaki</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neurophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghali, Michael George Zaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phrenic motoneurons: output elements of a highly organized intraspinal network</atitle><jtitle>Journal of neurophysiology</jtitle><addtitle>J Neurophysiol</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>119</volume><issue>3</issue><spage>1057</spage><epage>1070</epage><pages>1057-1070</pages><issn>0022-3077</issn><eissn>1522-1598</eissn><abstract>pontomedullary respiratory network generates the respiratory pattern and relays it to bulbar and spinal respiratory motor outputs. The phrenic motor system controlling diaphragm contraction receives and processes descending commands to produce orderly, synchronous, and cycle-to-cycle-reproducible spatiotemporal firing. Multiple investigators have studied phrenic motoneurons (PhMNs) in an attempt to shed light on local mechanisms underlying phrenic pattern formation. I and colleagues (Marchenko V, Ghali MG, Rogers RF. Am J Physiol Regul Integr Comp Physiol 308: R916-R926, 2015.) recorded PhMNs in unanesthetized, decerebrate rats and related their activity to simultaneous phrenic nerve (PhN) activity by creating a time-frequency representation of PhMN-PhN power and coherence. On the basis of their temporal firing patterns and relationship to PhN activity, we categorized PhMNs into three classes, each of which emerges as a result of intrinsic biophysical and network properties and organizes the orderly contraction of diaphragm motor fibers. For example, early inspiratory diaphragmatic activation by the early coherent burst generated by high-frequency PhMNs may be necessary to prime it to overcome its initial inertia. We have also demonstrated the existence of a prominent role for local intraspinal inhibitory mechanisms in shaping phrenic pattern formation. The objective of this review is to relate and synthesize recent findings with those of previous studies with the aim of demonstrating that the phrenic nucleus is a region of active local processing, rather than a passive relay of descending inputs.</abstract><cop>United States</cop><pmid>29021393</pmid><doi>10.1152/jn.00705.2015</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3077 |
ispartof | Journal of neurophysiology, 2018-03, Vol.119 (3), p.1057-1070 |
issn | 0022-3077 1522-1598 |
language | eng |
recordid | cdi_proquest_miscellaneous_1950415258 |
source | American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
title | Phrenic motoneurons: output elements of a highly organized intraspinal network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A28%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phrenic%20motoneurons:%20output%20elements%20of%20a%20highly%20organized%20intraspinal%20network&rft.jtitle=Journal%20of%20neurophysiology&rft.au=Ghali,%20Michael%20George%20Zaki&rft.date=2018-03-01&rft.volume=119&rft.issue=3&rft.spage=1057&rft.epage=1070&rft.pages=1057-1070&rft.issn=0022-3077&rft.eissn=1522-1598&rft_id=info:doi/10.1152/jn.00705.2015&rft_dat=%3Cproquest_cross%3E1950415258%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1950415258&rft_id=info:pmid/29021393&rfr_iscdi=true |