Factors Controlling the Reactivity and Chemoselectivity of Resonance Destabilized Amides in Ni-Catalyzed Decarbonylative and Nondecarbonylative Suzuki-Miyaura Coupling

N-Glutarimide amides have recently emerged as an exceptional group of compounds with unusually high reactivity in amide C–N bond activation. To understand the key factors that control the remarkable reactivity of these resonance destabilized amides, we explored the Ni-catalyzed decarbonylative and n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2017-11, Vol.139 (43), p.15522-15529
Hauptverfasser: Ji, Chong-Lei, Hong, Xin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15529
container_issue 43
container_start_page 15522
container_title Journal of the American Chemical Society
container_volume 139
creator Ji, Chong-Lei
Hong, Xin
description N-Glutarimide amides have recently emerged as an exceptional group of compounds with unusually high reactivity in amide C–N bond activation. To understand the key factors that control the remarkable reactivity of these resonance destabilized amides, we explored the Ni-catalyzed decarbonylative and nondecarbonylative Suzuki-Miyaura coupling with N-glutarimide amides through density functional theory calculations. Two leading effects are responsible for the C–N cleavage activity of N-glutarimide amides, the coordinating N-substituents and the geometric twisting. The carbonyl substituent of the N-glutarimide amides provides crucial nickel–oxygen interaction, which essentially acts as a directing group to facilitate the formation of the reactive intermediate for the amide C–N bond cleavage. The geometric twisting weakens the resonance stability by removing the acyl-nitrogen conjugation, which lowers the energy penalty for the C–N bond stretch during oxidative addition. For the chemoselectivity of decarbonylation versus carbonyl retention, we found that the C–C reductive elimination for ketone formation is kinetically faster than that for biaryl formation, while ketone is thermodynamically less stable with respect to the decarbonylated biaryls. The computations also suggest that the nickel catalyst is able to promote the decarbonylation of biaryl ketones via an unexpected C–C bond activation.
doi_str_mv 10.1021/jacs.7b09482
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1950159274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1950159274</sourcerecordid><originalsourceid>FETCH-LOGICAL-a427t-b758769315429ad54e276ecb78d7bceccb8abe09dddad849327ff23c598cb7b13</originalsourceid><addsrcrecordid>eNptkU9v1DAQxS0Eokvhxhn5yIEU20nWybFKW6hUisSfczS2J9SLYy92gpR-Ib4mTrsFCXEa-fk3b2b0CHnJ2Qlngr_dgU4nUrG2asQjsuG1YEXNxfYx2TDGRCGbbXlEnqW0y89KNPwpORIt47IUbEN-XYCeQky0C36KwTnrv9HpBuknzB_2p50WCt7Q7gbHkNDhgxiGjKTgwWukZ5gmUNbZWzT0dLQGE7WeXtuigwncsspnqCGq4BcH2QLvXK-DN__In-fb-bstPtgF5gh5rXm_7vScPBnAJXxxqMfk68X5l-59cfXx3WV3elVAJeRUKFk3ctuWvK5EC6auUMgtaiUbI5VGrVUDCllrjAHTVG0p5DCIUtdtkyHFy2Py-t53H8OPOZ_VjzZpdA48hjn1vK0Zr1shq4y-uUd1DClFHPp9tCPEpeesX6Pp12j6QzQZf3VwntWI5g_8kMXf0WvXLszR50P_7_UbtZWcdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1950159274</pqid></control><display><type>article</type><title>Factors Controlling the Reactivity and Chemoselectivity of Resonance Destabilized Amides in Ni-Catalyzed Decarbonylative and Nondecarbonylative Suzuki-Miyaura Coupling</title><source>ACS Publications</source><creator>Ji, Chong-Lei ; Hong, Xin</creator><creatorcontrib>Ji, Chong-Lei ; Hong, Xin</creatorcontrib><description>N-Glutarimide amides have recently emerged as an exceptional group of compounds with unusually high reactivity in amide C–N bond activation. To understand the key factors that control the remarkable reactivity of these resonance destabilized amides, we explored the Ni-catalyzed decarbonylative and nondecarbonylative Suzuki-Miyaura coupling with N-glutarimide amides through density functional theory calculations. Two leading effects are responsible for the C–N cleavage activity of N-glutarimide amides, the coordinating N-substituents and the geometric twisting. The carbonyl substituent of the N-glutarimide amides provides crucial nickel–oxygen interaction, which essentially acts as a directing group to facilitate the formation of the reactive intermediate for the amide C–N bond cleavage. The geometric twisting weakens the resonance stability by removing the acyl-nitrogen conjugation, which lowers the energy penalty for the C–N bond stretch during oxidative addition. For the chemoselectivity of decarbonylation versus carbonyl retention, we found that the C–C reductive elimination for ketone formation is kinetically faster than that for biaryl formation, while ketone is thermodynamically less stable with respect to the decarbonylated biaryls. The computations also suggest that the nickel catalyst is able to promote the decarbonylation of biaryl ketones via an unexpected C–C bond activation.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.7b09482</identifier><identifier>PMID: 29017320</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2017-11, Vol.139 (43), p.15522-15529</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a427t-b758769315429ad54e276ecb78d7bceccb8abe09dddad849327ff23c598cb7b13</citedby><cites>FETCH-LOGICAL-a427t-b758769315429ad54e276ecb78d7bceccb8abe09dddad849327ff23c598cb7b13</cites><orcidid>0000-0003-4717-2814</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.7b09482$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.7b09482$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29017320$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ji, Chong-Lei</creatorcontrib><creatorcontrib>Hong, Xin</creatorcontrib><title>Factors Controlling the Reactivity and Chemoselectivity of Resonance Destabilized Amides in Ni-Catalyzed Decarbonylative and Nondecarbonylative Suzuki-Miyaura Coupling</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>N-Glutarimide amides have recently emerged as an exceptional group of compounds with unusually high reactivity in amide C–N bond activation. To understand the key factors that control the remarkable reactivity of these resonance destabilized amides, we explored the Ni-catalyzed decarbonylative and nondecarbonylative Suzuki-Miyaura coupling with N-glutarimide amides through density functional theory calculations. Two leading effects are responsible for the C–N cleavage activity of N-glutarimide amides, the coordinating N-substituents and the geometric twisting. The carbonyl substituent of the N-glutarimide amides provides crucial nickel–oxygen interaction, which essentially acts as a directing group to facilitate the formation of the reactive intermediate for the amide C–N bond cleavage. The geometric twisting weakens the resonance stability by removing the acyl-nitrogen conjugation, which lowers the energy penalty for the C–N bond stretch during oxidative addition. For the chemoselectivity of decarbonylation versus carbonyl retention, we found that the C–C reductive elimination for ketone formation is kinetically faster than that for biaryl formation, while ketone is thermodynamically less stable with respect to the decarbonylated biaryls. The computations also suggest that the nickel catalyst is able to promote the decarbonylation of biaryl ketones via an unexpected C–C bond activation.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNptkU9v1DAQxS0Eokvhxhn5yIEU20nWybFKW6hUisSfczS2J9SLYy92gpR-Ib4mTrsFCXEa-fk3b2b0CHnJ2Qlngr_dgU4nUrG2asQjsuG1YEXNxfYx2TDGRCGbbXlEnqW0y89KNPwpORIt47IUbEN-XYCeQky0C36KwTnrv9HpBuknzB_2p50WCt7Q7gbHkNDhgxiGjKTgwWukZ5gmUNbZWzT0dLQGE7WeXtuigwncsspnqCGq4BcH2QLvXK-DN__In-fb-bstPtgF5gh5rXm_7vScPBnAJXxxqMfk68X5l-59cfXx3WV3elVAJeRUKFk3ctuWvK5EC6auUMgtaiUbI5VGrVUDCllrjAHTVG0p5DCIUtdtkyHFy2Py-t53H8OPOZ_VjzZpdA48hjn1vK0Zr1shq4y-uUd1DClFHPp9tCPEpeesX6Pp12j6QzQZf3VwntWI5g_8kMXf0WvXLszR50P_7_UbtZWcdA</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Ji, Chong-Lei</creator><creator>Hong, Xin</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4717-2814</orcidid></search><sort><creationdate>20171101</creationdate><title>Factors Controlling the Reactivity and Chemoselectivity of Resonance Destabilized Amides in Ni-Catalyzed Decarbonylative and Nondecarbonylative Suzuki-Miyaura Coupling</title><author>Ji, Chong-Lei ; Hong, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a427t-b758769315429ad54e276ecb78d7bceccb8abe09dddad849327ff23c598cb7b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Chong-Lei</creatorcontrib><creatorcontrib>Hong, Xin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Chong-Lei</au><au>Hong, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Factors Controlling the Reactivity and Chemoselectivity of Resonance Destabilized Amides in Ni-Catalyzed Decarbonylative and Nondecarbonylative Suzuki-Miyaura Coupling</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>139</volume><issue>43</issue><spage>15522</spage><epage>15529</epage><pages>15522-15529</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>N-Glutarimide amides have recently emerged as an exceptional group of compounds with unusually high reactivity in amide C–N bond activation. To understand the key factors that control the remarkable reactivity of these resonance destabilized amides, we explored the Ni-catalyzed decarbonylative and nondecarbonylative Suzuki-Miyaura coupling with N-glutarimide amides through density functional theory calculations. Two leading effects are responsible for the C–N cleavage activity of N-glutarimide amides, the coordinating N-substituents and the geometric twisting. The carbonyl substituent of the N-glutarimide amides provides crucial nickel–oxygen interaction, which essentially acts as a directing group to facilitate the formation of the reactive intermediate for the amide C–N bond cleavage. The geometric twisting weakens the resonance stability by removing the acyl-nitrogen conjugation, which lowers the energy penalty for the C–N bond stretch during oxidative addition. For the chemoselectivity of decarbonylation versus carbonyl retention, we found that the C–C reductive elimination for ketone formation is kinetically faster than that for biaryl formation, while ketone is thermodynamically less stable with respect to the decarbonylated biaryls. The computations also suggest that the nickel catalyst is able to promote the decarbonylation of biaryl ketones via an unexpected C–C bond activation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29017320</pmid><doi>10.1021/jacs.7b09482</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4717-2814</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2017-11, Vol.139 (43), p.15522-15529
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_1950159274
source ACS Publications
title Factors Controlling the Reactivity and Chemoselectivity of Resonance Destabilized Amides in Ni-Catalyzed Decarbonylative and Nondecarbonylative Suzuki-Miyaura Coupling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A57%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Factors%20Controlling%20the%20Reactivity%20and%20Chemoselectivity%20of%20Resonance%20Destabilized%20Amides%20in%20Ni-Catalyzed%20Decarbonylative%20and%20Nondecarbonylative%20Suzuki-Miyaura%20Coupling&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Ji,%20Chong-Lei&rft.date=2017-11-01&rft.volume=139&rft.issue=43&rft.spage=15522&rft.epage=15529&rft.pages=15522-15529&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.7b09482&rft_dat=%3Cproquest_cross%3E1950159274%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1950159274&rft_id=info:pmid/29017320&rfr_iscdi=true