GSWP-2: Multimodel Analysis and Implications for Our Perception of the Land Surface
The Second Global Soil Wetness Project (GSWP-2) is an initiative to compare and evaluate 10-year simulations by a broad range of land surface models under controlled conditions. A major product of GSWP-2 is the first global gridded multimodel analysis of land surface state variables and fluxes for u...
Gespeichert in:
Veröffentlicht in: | Bulletin of the American Meteorological Society 2006-10, Vol.87 (10), p.1381-1397 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1397 |
---|---|
container_issue | 10 |
container_start_page | 1381 |
container_title | Bulletin of the American Meteorological Society |
container_volume | 87 |
creator | Dirmeyer, Paul A. Gao, Xiang Zhao, Mei Guo, Zhichang Oki, Taikan Hanasaki, Naota |
description | The Second Global Soil Wetness Project (GSWP-2) is an initiative to compare and evaluate 10-year simulations by a broad range of land surface models under controlled conditions. A major product of GSWP-2 is the first global gridded multimodel analysis of land surface state variables and fluxes for use by meteorologists, hydrologists, engineers, biogeochemists, agronomists, botanists, ecologists, geographers, climatologists, and educators. Simulations by 13 land models from five nations have gone into production of the analysis. The models are driven by forcing data derived from a combination of gridded atmospheric reanalyses and observations. The resulting analysis consists of multimodel means and standard deviations on the monthly time scale, including profiles of soil moisture and temperature at six levels, as well as daily and climatological (mean annual cycle) fields for over 50 land surface variables. The monthly standard deviations provide a measure of model agreement that may be used as a quality metric. An overview of key characteristics of the analysis is presented here, along with information on obtaining the data. |
doi_str_mv | 10.1175/bams-87-10-1381 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_19499124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26217218</jstor_id><sourcerecordid>26217218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3621-4767c95aa4518787cf9dc01c695ae0bbe18a1589e5078c3385ad103ece2ff7123</originalsourceid><addsrcrecordid>eNo9j0FPwzAMhSM0EGVw5sSVW5idNHVyHNMYSEMgDcQxSrNU2tTSkWwH_j0ZRVxsPet7th9j1wh3iKQmtesS18QROEqNJ6xAJYBDSTRiBQBInguds4uUtkeZoYKdLVYfr1xcstPGtSlc_fUxe3-Yv80e-fJl8TSbLrmXlUBeUkXeKOdKhZo0-casPaCv8ixAXQfUDpU2QQFpny8ot0aQwQfRNIRCjtntsHcX-69DSHvbbZIPbes-Q39IFk1pDIoyg5MB9LFPKYbG7uKmc_HbIthjXns_fV5ZTb86R8mOm8GxTfs-_uMi_00CtfwBxKBOig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19499124</pqid></control><display><type>article</type><title>GSWP-2: Multimodel Analysis and Implications for Our Perception of the Land Surface</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Dirmeyer, Paul A. ; Gao, Xiang ; Zhao, Mei ; Guo, Zhichang ; Oki, Taikan ; Hanasaki, Naota</creator><creatorcontrib>Dirmeyer, Paul A. ; Gao, Xiang ; Zhao, Mei ; Guo, Zhichang ; Oki, Taikan ; Hanasaki, Naota</creatorcontrib><description>The Second Global Soil Wetness Project (GSWP-2) is an initiative to compare and evaluate 10-year simulations by a broad range of land surface models under controlled conditions. A major product of GSWP-2 is the first global gridded multimodel analysis of land surface state variables and fluxes for use by meteorologists, hydrologists, engineers, biogeochemists, agronomists, botanists, ecologists, geographers, climatologists, and educators. Simulations by 13 land models from five nations have gone into production of the analysis. The models are driven by forcing data derived from a combination of gridded atmospheric reanalyses and observations. The resulting analysis consists of multimodel means and standard deviations on the monthly time scale, including profiles of soil moisture and temperature at six levels, as well as daily and climatological (mean annual cycle) fields for over 50 land surface variables. The monthly standard deviations provide a measure of model agreement that may be used as a quality metric. An overview of key characteristics of the analysis is presented here, along with information on obtaining the data.</description><identifier>ISSN: 0003-0007</identifier><identifier>EISSN: 1520-0477</identifier><identifier>DOI: 10.1175/bams-87-10-1381</identifier><language>eng</language><publisher>American Meteorological Society</publisher><subject>Atmospheric models ; Climate models ; Datasets ; Hydrological modeling ; Meteorology ; Modeling ; Moisture content ; Soil water ; Surface water ; Vegetation</subject><ispartof>Bulletin of the American Meteorological Society, 2006-10, Vol.87 (10), p.1381-1397</ispartof><rights>2006 American Meteorological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3621-4767c95aa4518787cf9dc01c695ae0bbe18a1589e5078c3385ad103ece2ff7123</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26217218$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26217218$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,3681,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>Dirmeyer, Paul A.</creatorcontrib><creatorcontrib>Gao, Xiang</creatorcontrib><creatorcontrib>Zhao, Mei</creatorcontrib><creatorcontrib>Guo, Zhichang</creatorcontrib><creatorcontrib>Oki, Taikan</creatorcontrib><creatorcontrib>Hanasaki, Naota</creatorcontrib><title>GSWP-2: Multimodel Analysis and Implications for Our Perception of the Land Surface</title><title>Bulletin of the American Meteorological Society</title><description>The Second Global Soil Wetness Project (GSWP-2) is an initiative to compare and evaluate 10-year simulations by a broad range of land surface models under controlled conditions. A major product of GSWP-2 is the first global gridded multimodel analysis of land surface state variables and fluxes for use by meteorologists, hydrologists, engineers, biogeochemists, agronomists, botanists, ecologists, geographers, climatologists, and educators. Simulations by 13 land models from five nations have gone into production of the analysis. The models are driven by forcing data derived from a combination of gridded atmospheric reanalyses and observations. The resulting analysis consists of multimodel means and standard deviations on the monthly time scale, including profiles of soil moisture and temperature at six levels, as well as daily and climatological (mean annual cycle) fields for over 50 land surface variables. The monthly standard deviations provide a measure of model agreement that may be used as a quality metric. An overview of key characteristics of the analysis is presented here, along with information on obtaining the data.</description><subject>Atmospheric models</subject><subject>Climate models</subject><subject>Datasets</subject><subject>Hydrological modeling</subject><subject>Meteorology</subject><subject>Modeling</subject><subject>Moisture content</subject><subject>Soil water</subject><subject>Surface water</subject><subject>Vegetation</subject><issn>0003-0007</issn><issn>1520-0477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNo9j0FPwzAMhSM0EGVw5sSVW5idNHVyHNMYSEMgDcQxSrNU2tTSkWwH_j0ZRVxsPet7th9j1wh3iKQmtesS18QROEqNJ6xAJYBDSTRiBQBInguds4uUtkeZoYKdLVYfr1xcstPGtSlc_fUxe3-Yv80e-fJl8TSbLrmXlUBeUkXeKOdKhZo0-casPaCv8ixAXQfUDpU2QQFpny8ot0aQwQfRNIRCjtntsHcX-69DSHvbbZIPbes-Q39IFk1pDIoyg5MB9LFPKYbG7uKmc_HbIthjXns_fV5ZTb86R8mOm8GxTfs-_uMi_00CtfwBxKBOig</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Dirmeyer, Paul A.</creator><creator>Gao, Xiang</creator><creator>Zhao, Mei</creator><creator>Guo, Zhichang</creator><creator>Oki, Taikan</creator><creator>Hanasaki, Naota</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20061001</creationdate><title>GSWP-2</title><author>Dirmeyer, Paul A. ; Gao, Xiang ; Zhao, Mei ; Guo, Zhichang ; Oki, Taikan ; Hanasaki, Naota</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3621-4767c95aa4518787cf9dc01c695ae0bbe18a1589e5078c3385ad103ece2ff7123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Atmospheric models</topic><topic>Climate models</topic><topic>Datasets</topic><topic>Hydrological modeling</topic><topic>Meteorology</topic><topic>Modeling</topic><topic>Moisture content</topic><topic>Soil water</topic><topic>Surface water</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dirmeyer, Paul A.</creatorcontrib><creatorcontrib>Gao, Xiang</creatorcontrib><creatorcontrib>Zhao, Mei</creatorcontrib><creatorcontrib>Guo, Zhichang</creatorcontrib><creatorcontrib>Oki, Taikan</creatorcontrib><creatorcontrib>Hanasaki, Naota</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Bulletin of the American Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dirmeyer, Paul A.</au><au>Gao, Xiang</au><au>Zhao, Mei</au><au>Guo, Zhichang</au><au>Oki, Taikan</au><au>Hanasaki, Naota</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GSWP-2: Multimodel Analysis and Implications for Our Perception of the Land Surface</atitle><jtitle>Bulletin of the American Meteorological Society</jtitle><date>2006-10-01</date><risdate>2006</risdate><volume>87</volume><issue>10</issue><spage>1381</spage><epage>1397</epage><pages>1381-1397</pages><issn>0003-0007</issn><eissn>1520-0477</eissn><abstract>The Second Global Soil Wetness Project (GSWP-2) is an initiative to compare and evaluate 10-year simulations by a broad range of land surface models under controlled conditions. A major product of GSWP-2 is the first global gridded multimodel analysis of land surface state variables and fluxes for use by meteorologists, hydrologists, engineers, biogeochemists, agronomists, botanists, ecologists, geographers, climatologists, and educators. Simulations by 13 land models from five nations have gone into production of the analysis. The models are driven by forcing data derived from a combination of gridded atmospheric reanalyses and observations. The resulting analysis consists of multimodel means and standard deviations on the monthly time scale, including profiles of soil moisture and temperature at six levels, as well as daily and climatological (mean annual cycle) fields for over 50 land surface variables. The monthly standard deviations provide a measure of model agreement that may be used as a quality metric. An overview of key characteristics of the analysis is presented here, along with information on obtaining the data.</abstract><pub>American Meteorological Society</pub><doi>10.1175/bams-87-10-1381</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-0007 |
ispartof | Bulletin of the American Meteorological Society, 2006-10, Vol.87 (10), p.1381-1397 |
issn | 0003-0007 1520-0477 |
language | eng |
recordid | cdi_proquest_miscellaneous_19499124 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Archive Collection A-Z Listing |
subjects | Atmospheric models Climate models Datasets Hydrological modeling Meteorology Modeling Moisture content Soil water Surface water Vegetation |
title | GSWP-2: Multimodel Analysis and Implications for Our Perception of the Land Surface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A39%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GSWP-2:%20Multimodel%20Analysis%20and%20Implications%20for%20Our%20Perception%20of%20the%20Land%20Surface&rft.jtitle=Bulletin%20of%20the%20American%20Meteorological%20Society&rft.au=Dirmeyer,%20Paul%20A.&rft.date=2006-10-01&rft.volume=87&rft.issue=10&rft.spage=1381&rft.epage=1397&rft.pages=1381-1397&rft.issn=0003-0007&rft.eissn=1520-0477&rft_id=info:doi/10.1175/bams-87-10-1381&rft_dat=%3Cjstor_proqu%3E26217218%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19499124&rft_id=info:pmid/&rft_jstor_id=26217218&rfr_iscdi=true |