GSWP-2: Multimodel Analysis and Implications for Our Perception of the Land Surface

The Second Global Soil Wetness Project (GSWP-2) is an initiative to compare and evaluate 10-year simulations by a broad range of land surface models under controlled conditions. A major product of GSWP-2 is the first global gridded multimodel analysis of land surface state variables and fluxes for u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the American Meteorological Society 2006-10, Vol.87 (10), p.1381-1397
Hauptverfasser: Dirmeyer, Paul A., Gao, Xiang, Zhao, Mei, Guo, Zhichang, Oki, Taikan, Hanasaki, Naota
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1397
container_issue 10
container_start_page 1381
container_title Bulletin of the American Meteorological Society
container_volume 87
creator Dirmeyer, Paul A.
Gao, Xiang
Zhao, Mei
Guo, Zhichang
Oki, Taikan
Hanasaki, Naota
description The Second Global Soil Wetness Project (GSWP-2) is an initiative to compare and evaluate 10-year simulations by a broad range of land surface models under controlled conditions. A major product of GSWP-2 is the first global gridded multimodel analysis of land surface state variables and fluxes for use by meteorologists, hydrologists, engineers, biogeochemists, agronomists, botanists, ecologists, geographers, climatologists, and educators. Simulations by 13 land models from five nations have gone into production of the analysis. The models are driven by forcing data derived from a combination of gridded atmospheric reanalyses and observations. The resulting analysis consists of multimodel means and standard deviations on the monthly time scale, including profiles of soil moisture and temperature at six levels, as well as daily and climatological (mean annual cycle) fields for over 50 land surface variables. The monthly standard deviations provide a measure of model agreement that may be used as a quality metric. An overview of key characteristics of the analysis is presented here, along with information on obtaining the data.
doi_str_mv 10.1175/bams-87-10-1381
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_19499124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26217218</jstor_id><sourcerecordid>26217218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3621-4767c95aa4518787cf9dc01c695ae0bbe18a1589e5078c3385ad103ece2ff7123</originalsourceid><addsrcrecordid>eNo9j0FPwzAMhSM0EGVw5sSVW5idNHVyHNMYSEMgDcQxSrNU2tTSkWwH_j0ZRVxsPet7th9j1wh3iKQmtesS18QROEqNJ6xAJYBDSTRiBQBInguds4uUtkeZoYKdLVYfr1xcstPGtSlc_fUxe3-Yv80e-fJl8TSbLrmXlUBeUkXeKOdKhZo0-casPaCv8ixAXQfUDpU2QQFpny8ot0aQwQfRNIRCjtntsHcX-69DSHvbbZIPbes-Q39IFk1pDIoyg5MB9LFPKYbG7uKmc_HbIthjXns_fV5ZTb86R8mOm8GxTfs-_uMi_00CtfwBxKBOig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19499124</pqid></control><display><type>article</type><title>GSWP-2: Multimodel Analysis and Implications for Our Perception of the Land Surface</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Dirmeyer, Paul A. ; Gao, Xiang ; Zhao, Mei ; Guo, Zhichang ; Oki, Taikan ; Hanasaki, Naota</creator><creatorcontrib>Dirmeyer, Paul A. ; Gao, Xiang ; Zhao, Mei ; Guo, Zhichang ; Oki, Taikan ; Hanasaki, Naota</creatorcontrib><description>The Second Global Soil Wetness Project (GSWP-2) is an initiative to compare and evaluate 10-year simulations by a broad range of land surface models under controlled conditions. A major product of GSWP-2 is the first global gridded multimodel analysis of land surface state variables and fluxes for use by meteorologists, hydrologists, engineers, biogeochemists, agronomists, botanists, ecologists, geographers, climatologists, and educators. Simulations by 13 land models from five nations have gone into production of the analysis. The models are driven by forcing data derived from a combination of gridded atmospheric reanalyses and observations. The resulting analysis consists of multimodel means and standard deviations on the monthly time scale, including profiles of soil moisture and temperature at six levels, as well as daily and climatological (mean annual cycle) fields for over 50 land surface variables. The monthly standard deviations provide a measure of model agreement that may be used as a quality metric. An overview of key characteristics of the analysis is presented here, along with information on obtaining the data.</description><identifier>ISSN: 0003-0007</identifier><identifier>EISSN: 1520-0477</identifier><identifier>DOI: 10.1175/bams-87-10-1381</identifier><language>eng</language><publisher>American Meteorological Society</publisher><subject>Atmospheric models ; Climate models ; Datasets ; Hydrological modeling ; Meteorology ; Modeling ; Moisture content ; Soil water ; Surface water ; Vegetation</subject><ispartof>Bulletin of the American Meteorological Society, 2006-10, Vol.87 (10), p.1381-1397</ispartof><rights>2006 American Meteorological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3621-4767c95aa4518787cf9dc01c695ae0bbe18a1589e5078c3385ad103ece2ff7123</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26217218$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26217218$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,3681,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>Dirmeyer, Paul A.</creatorcontrib><creatorcontrib>Gao, Xiang</creatorcontrib><creatorcontrib>Zhao, Mei</creatorcontrib><creatorcontrib>Guo, Zhichang</creatorcontrib><creatorcontrib>Oki, Taikan</creatorcontrib><creatorcontrib>Hanasaki, Naota</creatorcontrib><title>GSWP-2: Multimodel Analysis and Implications for Our Perception of the Land Surface</title><title>Bulletin of the American Meteorological Society</title><description>The Second Global Soil Wetness Project (GSWP-2) is an initiative to compare and evaluate 10-year simulations by a broad range of land surface models under controlled conditions. A major product of GSWP-2 is the first global gridded multimodel analysis of land surface state variables and fluxes for use by meteorologists, hydrologists, engineers, biogeochemists, agronomists, botanists, ecologists, geographers, climatologists, and educators. Simulations by 13 land models from five nations have gone into production of the analysis. The models are driven by forcing data derived from a combination of gridded atmospheric reanalyses and observations. The resulting analysis consists of multimodel means and standard deviations on the monthly time scale, including profiles of soil moisture and temperature at six levels, as well as daily and climatological (mean annual cycle) fields for over 50 land surface variables. The monthly standard deviations provide a measure of model agreement that may be used as a quality metric. An overview of key characteristics of the analysis is presented here, along with information on obtaining the data.</description><subject>Atmospheric models</subject><subject>Climate models</subject><subject>Datasets</subject><subject>Hydrological modeling</subject><subject>Meteorology</subject><subject>Modeling</subject><subject>Moisture content</subject><subject>Soil water</subject><subject>Surface water</subject><subject>Vegetation</subject><issn>0003-0007</issn><issn>1520-0477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNo9j0FPwzAMhSM0EGVw5sSVW5idNHVyHNMYSEMgDcQxSrNU2tTSkWwH_j0ZRVxsPet7th9j1wh3iKQmtesS18QROEqNJ6xAJYBDSTRiBQBInguds4uUtkeZoYKdLVYfr1xcstPGtSlc_fUxe3-Yv80e-fJl8TSbLrmXlUBeUkXeKOdKhZo0-casPaCv8ixAXQfUDpU2QQFpny8ot0aQwQfRNIRCjtntsHcX-69DSHvbbZIPbes-Q39IFk1pDIoyg5MB9LFPKYbG7uKmc_HbIthjXns_fV5ZTb86R8mOm8GxTfs-_uMi_00CtfwBxKBOig</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Dirmeyer, Paul A.</creator><creator>Gao, Xiang</creator><creator>Zhao, Mei</creator><creator>Guo, Zhichang</creator><creator>Oki, Taikan</creator><creator>Hanasaki, Naota</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20061001</creationdate><title>GSWP-2</title><author>Dirmeyer, Paul A. ; Gao, Xiang ; Zhao, Mei ; Guo, Zhichang ; Oki, Taikan ; Hanasaki, Naota</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3621-4767c95aa4518787cf9dc01c695ae0bbe18a1589e5078c3385ad103ece2ff7123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Atmospheric models</topic><topic>Climate models</topic><topic>Datasets</topic><topic>Hydrological modeling</topic><topic>Meteorology</topic><topic>Modeling</topic><topic>Moisture content</topic><topic>Soil water</topic><topic>Surface water</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dirmeyer, Paul A.</creatorcontrib><creatorcontrib>Gao, Xiang</creatorcontrib><creatorcontrib>Zhao, Mei</creatorcontrib><creatorcontrib>Guo, Zhichang</creatorcontrib><creatorcontrib>Oki, Taikan</creatorcontrib><creatorcontrib>Hanasaki, Naota</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Bulletin of the American Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dirmeyer, Paul A.</au><au>Gao, Xiang</au><au>Zhao, Mei</au><au>Guo, Zhichang</au><au>Oki, Taikan</au><au>Hanasaki, Naota</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GSWP-2: Multimodel Analysis and Implications for Our Perception of the Land Surface</atitle><jtitle>Bulletin of the American Meteorological Society</jtitle><date>2006-10-01</date><risdate>2006</risdate><volume>87</volume><issue>10</issue><spage>1381</spage><epage>1397</epage><pages>1381-1397</pages><issn>0003-0007</issn><eissn>1520-0477</eissn><abstract>The Second Global Soil Wetness Project (GSWP-2) is an initiative to compare and evaluate 10-year simulations by a broad range of land surface models under controlled conditions. A major product of GSWP-2 is the first global gridded multimodel analysis of land surface state variables and fluxes for use by meteorologists, hydrologists, engineers, biogeochemists, agronomists, botanists, ecologists, geographers, climatologists, and educators. Simulations by 13 land models from five nations have gone into production of the analysis. The models are driven by forcing data derived from a combination of gridded atmospheric reanalyses and observations. The resulting analysis consists of multimodel means and standard deviations on the monthly time scale, including profiles of soil moisture and temperature at six levels, as well as daily and climatological (mean annual cycle) fields for over 50 land surface variables. The monthly standard deviations provide a measure of model agreement that may be used as a quality metric. An overview of key characteristics of the analysis is presented here, along with information on obtaining the data.</abstract><pub>American Meteorological Society</pub><doi>10.1175/bams-87-10-1381</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-0007
ispartof Bulletin of the American Meteorological Society, 2006-10, Vol.87 (10), p.1381-1397
issn 0003-0007
1520-0477
language eng
recordid cdi_proquest_miscellaneous_19499124
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Archive Collection A-Z Listing
subjects Atmospheric models
Climate models
Datasets
Hydrological modeling
Meteorology
Modeling
Moisture content
Soil water
Surface water
Vegetation
title GSWP-2: Multimodel Analysis and Implications for Our Perception of the Land Surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A39%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GSWP-2:%20Multimodel%20Analysis%20and%20Implications%20for%20Our%20Perception%20of%20the%20Land%20Surface&rft.jtitle=Bulletin%20of%20the%20American%20Meteorological%20Society&rft.au=Dirmeyer,%20Paul%20A.&rft.date=2006-10-01&rft.volume=87&rft.issue=10&rft.spage=1381&rft.epage=1397&rft.pages=1381-1397&rft.issn=0003-0007&rft.eissn=1520-0477&rft_id=info:doi/10.1175/bams-87-10-1381&rft_dat=%3Cjstor_proqu%3E26217218%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19499124&rft_id=info:pmid/&rft_jstor_id=26217218&rfr_iscdi=true