Scaffold Composition Determines the Angiogenic Outcome of Cell‐Based Vascular Endothelial Growth Factor Expression by Modulating Its Microenvironmental Distribution

Delivery of genetically modified cells overexpressing Vascular Endothelial Growth Factor (VEGF) is a promising approach to induce therapeutic angiogenesis in ischemic tissues. The effect of the protein is strictly modulated by its interaction with the components of the extracellular matrix. Its ther...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced healthcare materials 2017-12, Vol.6 (24), p.n/a
Hauptverfasser: Gaudiello, Emanuele, Melly, Ludovic, Cerino, Giulia, Boccardo, Stefano, Jalili‐Firoozinezhad, Sasan, Xu, Lifen, Eckstein, Friedrich, Martin, Ivan, Kaufmann, Beat A., Banfi, Andrea, Marsano, Anna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 24
container_start_page
container_title Advanced healthcare materials
container_volume 6
creator Gaudiello, Emanuele
Melly, Ludovic
Cerino, Giulia
Boccardo, Stefano
Jalili‐Firoozinezhad, Sasan
Xu, Lifen
Eckstein, Friedrich
Martin, Ivan
Kaufmann, Beat A.
Banfi, Andrea
Marsano, Anna
description Delivery of genetically modified cells overexpressing Vascular Endothelial Growth Factor (VEGF) is a promising approach to induce therapeutic angiogenesis in ischemic tissues. The effect of the protein is strictly modulated by its interaction with the components of the extracellular matrix. Its therapeutic potential depends on a sustained but controlled release at the microenvironmental level in order to avoid the formation of abnormal blood vessels. In this study, it is hypothesized that the composition of the scaffold plays a key role in modulating the binding, hence the therapeutic effect, of the VEGF released by 3D‐cell constructs. It is found that collagen sponges, which poorly bind VEGF, prevent the formation of localized hot spots of excessive concentration, therefore, precluding the development of aberrant angiogenesis despite uncontrolled expression by a genetically engineered population of adipose tissue‐derived stromal cells. On the contrary, after seeding on VEGF‐binding egg‐white scaffolds, the same cell population caused aberrantly enlarged vascular structures after 14 d. Collagen‐based engineered tissues also induced a safe and efficient angiogenesis in both the patch itself and the underlying myocardium in rat models. These findings open new perspectives on the control and the delivery of proangiogenic stimuli, and are fundamental for the vascularization of engineered tissues/organs. Promising angiogenic approaches rely on cell‐based delivery of exogenous VEGF. However, the 3D microenvironmental distribution of VEGF levels needs to be precisely controlled in vivo around each producing cell to avoid the formation of aberrant vascular structures. Our findings show that the matrix composition, used to deliver the genetically modified cells, is the unique discriminating factor between normal and aberrant angiogenesis.
doi_str_mv 10.1002/adhm.201700600
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1949694138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1949694138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4550-108528c6756af8ea185bb54977de2525de08e81d38675126b69be2546c3d3a93</originalsourceid><addsrcrecordid>eNqFkb9u2zAQxoWgRRKkWTMGBLp0sUtSIkWOrp1_QIwMDboKFHmyGUikS1JJvfUR-hR9sD5JaTh1gS695Q643_fhDl9RXBA8JRjTj8qshynFpMaYY3xUnFIi6YRyJt8c5gqfFOcxPuFcnBEuyHFxQoWUFaXstPj5Wauu871Bcz9sfLTJeocWkCAM1kFEaQ1o5lbWr8BZjR7GpP0AyHdoDn3_6_uPTyqCQV9U1GOvArpyxmdNb1WPboJ_SWt0rXTyefNtEyDGnX-7RUtvMp-sW6G7FNHS6uDBPdvg3QAuZfXCxhRsO-4uele87VQf4fy1nxWP11eP89vJ_cPN3Xx2P9EVY3hCsGBUaF4zrjoBigjWtqySdW2AMsoMYAGCmFJkhFDectnmRcV1aUoly7Piw952E_zXEWJqBht1_lM58GNsiKwklxUpRUbf_4M--TG4fFymalFjIjnL1HRP5e9iDNA1m2AHFbYNwc0uw2aXYXPIMAsuX23HdgBzwP8klgG5B15sD9v_2DWzxe3yr_lvIvSrWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1978701965</pqid></control><display><type>article</type><title>Scaffold Composition Determines the Angiogenic Outcome of Cell‐Based Vascular Endothelial Growth Factor Expression by Modulating Its Microenvironmental Distribution</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gaudiello, Emanuele ; Melly, Ludovic ; Cerino, Giulia ; Boccardo, Stefano ; Jalili‐Firoozinezhad, Sasan ; Xu, Lifen ; Eckstein, Friedrich ; Martin, Ivan ; Kaufmann, Beat A. ; Banfi, Andrea ; Marsano, Anna</creator><creatorcontrib>Gaudiello, Emanuele ; Melly, Ludovic ; Cerino, Giulia ; Boccardo, Stefano ; Jalili‐Firoozinezhad, Sasan ; Xu, Lifen ; Eckstein, Friedrich ; Martin, Ivan ; Kaufmann, Beat A. ; Banfi, Andrea ; Marsano, Anna</creatorcontrib><description>Delivery of genetically modified cells overexpressing Vascular Endothelial Growth Factor (VEGF) is a promising approach to induce therapeutic angiogenesis in ischemic tissues. The effect of the protein is strictly modulated by its interaction with the components of the extracellular matrix. Its therapeutic potential depends on a sustained but controlled release at the microenvironmental level in order to avoid the formation of abnormal blood vessels. In this study, it is hypothesized that the composition of the scaffold plays a key role in modulating the binding, hence the therapeutic effect, of the VEGF released by 3D‐cell constructs. It is found that collagen sponges, which poorly bind VEGF, prevent the formation of localized hot spots of excessive concentration, therefore, precluding the development of aberrant angiogenesis despite uncontrolled expression by a genetically engineered population of adipose tissue‐derived stromal cells. On the contrary, after seeding on VEGF‐binding egg‐white scaffolds, the same cell population caused aberrantly enlarged vascular structures after 14 d. Collagen‐based engineered tissues also induced a safe and efficient angiogenesis in both the patch itself and the underlying myocardium in rat models. These findings open new perspectives on the control and the delivery of proangiogenic stimuli, and are fundamental for the vascularization of engineered tissues/organs. Promising angiogenic approaches rely on cell‐based delivery of exogenous VEGF. However, the 3D microenvironmental distribution of VEGF levels needs to be precisely controlled in vivo around each producing cell to avoid the formation of aberrant vascular structures. Our findings show that the matrix composition, used to deliver the genetically modified cells, is the unique discriminating factor between normal and aberrant angiogenesis.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.201700600</identifier><identifier>PMID: 28994225</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aberration ; Adipose tissue ; Angiogenesis ; Animal models ; Animals ; Binding ; Blood vessels ; Cell Line ; cell‐based gene therapy ; Collagen ; Collagen - metabolism ; collagen scaffold ; Controlled release ; delivery system ; Extracellular Matrix ; Genetic engineering ; Genetic modification ; Humans ; Image Processing, Computer-Assisted ; Ischemia ; Male ; Myocardium ; Myocardium - cytology ; Myocardium - metabolism ; Neovascularization, Physiologic ; Organs ; Population genetics ; Rats ; Rats, Nude ; Scaffolds ; Stromal cells ; Stromal Cells - metabolism ; Tissue Engineering ; Tissue Scaffolds ; Tissues ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factors - genetics ; Vascularization</subject><ispartof>Advanced healthcare materials, 2017-12, Vol.6 (24), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4550-108528c6756af8ea185bb54977de2525de08e81d38675126b69be2546c3d3a93</citedby><cites>FETCH-LOGICAL-c4550-108528c6756af8ea185bb54977de2525de08e81d38675126b69be2546c3d3a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.201700600$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.201700600$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28994225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaudiello, Emanuele</creatorcontrib><creatorcontrib>Melly, Ludovic</creatorcontrib><creatorcontrib>Cerino, Giulia</creatorcontrib><creatorcontrib>Boccardo, Stefano</creatorcontrib><creatorcontrib>Jalili‐Firoozinezhad, Sasan</creatorcontrib><creatorcontrib>Xu, Lifen</creatorcontrib><creatorcontrib>Eckstein, Friedrich</creatorcontrib><creatorcontrib>Martin, Ivan</creatorcontrib><creatorcontrib>Kaufmann, Beat A.</creatorcontrib><creatorcontrib>Banfi, Andrea</creatorcontrib><creatorcontrib>Marsano, Anna</creatorcontrib><title>Scaffold Composition Determines the Angiogenic Outcome of Cell‐Based Vascular Endothelial Growth Factor Expression by Modulating Its Microenvironmental Distribution</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Delivery of genetically modified cells overexpressing Vascular Endothelial Growth Factor (VEGF) is a promising approach to induce therapeutic angiogenesis in ischemic tissues. The effect of the protein is strictly modulated by its interaction with the components of the extracellular matrix. Its therapeutic potential depends on a sustained but controlled release at the microenvironmental level in order to avoid the formation of abnormal blood vessels. In this study, it is hypothesized that the composition of the scaffold plays a key role in modulating the binding, hence the therapeutic effect, of the VEGF released by 3D‐cell constructs. It is found that collagen sponges, which poorly bind VEGF, prevent the formation of localized hot spots of excessive concentration, therefore, precluding the development of aberrant angiogenesis despite uncontrolled expression by a genetically engineered population of adipose tissue‐derived stromal cells. On the contrary, after seeding on VEGF‐binding egg‐white scaffolds, the same cell population caused aberrantly enlarged vascular structures after 14 d. Collagen‐based engineered tissues also induced a safe and efficient angiogenesis in both the patch itself and the underlying myocardium in rat models. These findings open new perspectives on the control and the delivery of proangiogenic stimuli, and are fundamental for the vascularization of engineered tissues/organs. Promising angiogenic approaches rely on cell‐based delivery of exogenous VEGF. However, the 3D microenvironmental distribution of VEGF levels needs to be precisely controlled in vivo around each producing cell to avoid the formation of aberrant vascular structures. Our findings show that the matrix composition, used to deliver the genetically modified cells, is the unique discriminating factor between normal and aberrant angiogenesis.</description><subject>Aberration</subject><subject>Adipose tissue</subject><subject>Angiogenesis</subject><subject>Animal models</subject><subject>Animals</subject><subject>Binding</subject><subject>Blood vessels</subject><subject>Cell Line</subject><subject>cell‐based gene therapy</subject><subject>Collagen</subject><subject>Collagen - metabolism</subject><subject>collagen scaffold</subject><subject>Controlled release</subject><subject>delivery system</subject><subject>Extracellular Matrix</subject><subject>Genetic engineering</subject><subject>Genetic modification</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Ischemia</subject><subject>Male</subject><subject>Myocardium</subject><subject>Myocardium - cytology</subject><subject>Myocardium - metabolism</subject><subject>Neovascularization, Physiologic</subject><subject>Organs</subject><subject>Population genetics</subject><subject>Rats</subject><subject>Rats, Nude</subject><subject>Scaffolds</subject><subject>Stromal cells</subject><subject>Stromal Cells - metabolism</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds</subject><subject>Tissues</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factors - genetics</subject><subject>Vascularization</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkb9u2zAQxoWgRRKkWTMGBLp0sUtSIkWOrp1_QIwMDboKFHmyGUikS1JJvfUR-hR9sD5JaTh1gS695Q643_fhDl9RXBA8JRjTj8qshynFpMaYY3xUnFIi6YRyJt8c5gqfFOcxPuFcnBEuyHFxQoWUFaXstPj5Wauu871Bcz9sfLTJeocWkCAM1kFEaQ1o5lbWr8BZjR7GpP0AyHdoDn3_6_uPTyqCQV9U1GOvArpyxmdNb1WPboJ_SWt0rXTyefNtEyDGnX-7RUtvMp-sW6G7FNHS6uDBPdvg3QAuZfXCxhRsO-4uele87VQf4fy1nxWP11eP89vJ_cPN3Xx2P9EVY3hCsGBUaF4zrjoBigjWtqySdW2AMsoMYAGCmFJkhFDectnmRcV1aUoly7Piw952E_zXEWJqBht1_lM58GNsiKwklxUpRUbf_4M--TG4fFymalFjIjnL1HRP5e9iDNA1m2AHFbYNwc0uw2aXYXPIMAsuX23HdgBzwP8klgG5B15sD9v_2DWzxe3yr_lvIvSrWQ</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Gaudiello, Emanuele</creator><creator>Melly, Ludovic</creator><creator>Cerino, Giulia</creator><creator>Boccardo, Stefano</creator><creator>Jalili‐Firoozinezhad, Sasan</creator><creator>Xu, Lifen</creator><creator>Eckstein, Friedrich</creator><creator>Martin, Ivan</creator><creator>Kaufmann, Beat A.</creator><creator>Banfi, Andrea</creator><creator>Marsano, Anna</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>201712</creationdate><title>Scaffold Composition Determines the Angiogenic Outcome of Cell‐Based Vascular Endothelial Growth Factor Expression by Modulating Its Microenvironmental Distribution</title><author>Gaudiello, Emanuele ; Melly, Ludovic ; Cerino, Giulia ; Boccardo, Stefano ; Jalili‐Firoozinezhad, Sasan ; Xu, Lifen ; Eckstein, Friedrich ; Martin, Ivan ; Kaufmann, Beat A. ; Banfi, Andrea ; Marsano, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4550-108528c6756af8ea185bb54977de2525de08e81d38675126b69be2546c3d3a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aberration</topic><topic>Adipose tissue</topic><topic>Angiogenesis</topic><topic>Animal models</topic><topic>Animals</topic><topic>Binding</topic><topic>Blood vessels</topic><topic>Cell Line</topic><topic>cell‐based gene therapy</topic><topic>Collagen</topic><topic>Collagen - metabolism</topic><topic>collagen scaffold</topic><topic>Controlled release</topic><topic>delivery system</topic><topic>Extracellular Matrix</topic><topic>Genetic engineering</topic><topic>Genetic modification</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Ischemia</topic><topic>Male</topic><topic>Myocardium</topic><topic>Myocardium - cytology</topic><topic>Myocardium - metabolism</topic><topic>Neovascularization, Physiologic</topic><topic>Organs</topic><topic>Population genetics</topic><topic>Rats</topic><topic>Rats, Nude</topic><topic>Scaffolds</topic><topic>Stromal cells</topic><topic>Stromal Cells - metabolism</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds</topic><topic>Tissues</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factors - genetics</topic><topic>Vascularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaudiello, Emanuele</creatorcontrib><creatorcontrib>Melly, Ludovic</creatorcontrib><creatorcontrib>Cerino, Giulia</creatorcontrib><creatorcontrib>Boccardo, Stefano</creatorcontrib><creatorcontrib>Jalili‐Firoozinezhad, Sasan</creatorcontrib><creatorcontrib>Xu, Lifen</creatorcontrib><creatorcontrib>Eckstein, Friedrich</creatorcontrib><creatorcontrib>Martin, Ivan</creatorcontrib><creatorcontrib>Kaufmann, Beat A.</creatorcontrib><creatorcontrib>Banfi, Andrea</creatorcontrib><creatorcontrib>Marsano, Anna</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaudiello, Emanuele</au><au>Melly, Ludovic</au><au>Cerino, Giulia</au><au>Boccardo, Stefano</au><au>Jalili‐Firoozinezhad, Sasan</au><au>Xu, Lifen</au><au>Eckstein, Friedrich</au><au>Martin, Ivan</au><au>Kaufmann, Beat A.</au><au>Banfi, Andrea</au><au>Marsano, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaffold Composition Determines the Angiogenic Outcome of Cell‐Based Vascular Endothelial Growth Factor Expression by Modulating Its Microenvironmental Distribution</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2017-12</date><risdate>2017</risdate><volume>6</volume><issue>24</issue><epage>n/a</epage><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>Delivery of genetically modified cells overexpressing Vascular Endothelial Growth Factor (VEGF) is a promising approach to induce therapeutic angiogenesis in ischemic tissues. The effect of the protein is strictly modulated by its interaction with the components of the extracellular matrix. Its therapeutic potential depends on a sustained but controlled release at the microenvironmental level in order to avoid the formation of abnormal blood vessels. In this study, it is hypothesized that the composition of the scaffold plays a key role in modulating the binding, hence the therapeutic effect, of the VEGF released by 3D‐cell constructs. It is found that collagen sponges, which poorly bind VEGF, prevent the formation of localized hot spots of excessive concentration, therefore, precluding the development of aberrant angiogenesis despite uncontrolled expression by a genetically engineered population of adipose tissue‐derived stromal cells. On the contrary, after seeding on VEGF‐binding egg‐white scaffolds, the same cell population caused aberrantly enlarged vascular structures after 14 d. Collagen‐based engineered tissues also induced a safe and efficient angiogenesis in both the patch itself and the underlying myocardium in rat models. These findings open new perspectives on the control and the delivery of proangiogenic stimuli, and are fundamental for the vascularization of engineered tissues/organs. Promising angiogenic approaches rely on cell‐based delivery of exogenous VEGF. However, the 3D microenvironmental distribution of VEGF levels needs to be precisely controlled in vivo around each producing cell to avoid the formation of aberrant vascular structures. Our findings show that the matrix composition, used to deliver the genetically modified cells, is the unique discriminating factor between normal and aberrant angiogenesis.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28994225</pmid><doi>10.1002/adhm.201700600</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2017-12, Vol.6 (24), p.n/a
issn 2192-2640
2192-2659
language eng
recordid cdi_proquest_miscellaneous_1949694138
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Aberration
Adipose tissue
Angiogenesis
Animal models
Animals
Binding
Blood vessels
Cell Line
cell‐based gene therapy
Collagen
Collagen - metabolism
collagen scaffold
Controlled release
delivery system
Extracellular Matrix
Genetic engineering
Genetic modification
Humans
Image Processing, Computer-Assisted
Ischemia
Male
Myocardium
Myocardium - cytology
Myocardium - metabolism
Neovascularization, Physiologic
Organs
Population genetics
Rats
Rats, Nude
Scaffolds
Stromal cells
Stromal Cells - metabolism
Tissue Engineering
Tissue Scaffolds
Tissues
Vascular endothelial growth factor
Vascular Endothelial Growth Factors - genetics
Vascularization
title Scaffold Composition Determines the Angiogenic Outcome of Cell‐Based Vascular Endothelial Growth Factor Expression by Modulating Its Microenvironmental Distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A44%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaffold%20Composition%20Determines%20the%20Angiogenic%20Outcome%20of%20Cell%E2%80%90Based%20Vascular%20Endothelial%20Growth%20Factor%20Expression%20by%20Modulating%20Its%20Microenvironmental%20Distribution&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Gaudiello,%20Emanuele&rft.date=2017-12&rft.volume=6&rft.issue=24&rft.epage=n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.201700600&rft_dat=%3Cproquest_cross%3E1949694138%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1978701965&rft_id=info:pmid/28994225&rfr_iscdi=true