Reduced silent information regulator 1 signaling exacerbates sepsis-induced myocardial injury and mitigates the protective effect of a liver X receptor agonist
Myocardial injury and dysfunction are critical manifestations of sepsis. Previous studies have reported that liver X receptor (LXR) activation is protective during sepsis. However, whether LXR activation protects against septic heart injury and its underlying mechanisms remain elusive. This study wa...
Gespeichert in:
Veröffentlicht in: | Free radical biology & medicine 2017-12, Vol.113, p.291-303 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 303 |
---|---|
container_issue | |
container_start_page | 291 |
container_title | Free radical biology & medicine |
container_volume | 113 |
creator | Han, Dong Li, Xiang Li, Shuang Su, Tao Fan, Li Fan, Wen-Si Qiao, Hong-Yu Chen, Jiang-Wei Fan, Miao-Miao Li, Xiu-Juan Wang, Ya-Bin Ma, Sai Qiu, Ya Tian, Zu-Hong Cao, Feng |
description | Myocardial injury and dysfunction are critical manifestations of sepsis. Previous studies have reported that liver X receptor (LXR) activation is protective during sepsis. However, whether LXR activation protects against septic heart injury and its underlying mechanisms remain elusive. This study was designed to determine the role of LXR activation in the septic heart with a focus on SIRT1 (silent information regulator 1) signaling. Male cardiac-specific SIRT1 knockout mice (SIRT1-/-) and their wild-type littermates were subjected to sepsis by cecal ligation and puncture (CLP) in the presence or absence of LXR agonist T0901317. The survival rate of mice was recorded during the 7-day period post CLP. Our results demonstrated that SIRT1-/- mice suffered from exacerbated mortality and myocardial injury in comparison with their wild-type littermates. Meanwhile, T0901317 treatment improved mice survival, accompanied by significant ameliorations of myocardial injury and dysfunction in wild-type mice but not in SIRT1-/- mice. Furthermore, the levels of myocardial inflammatory cytokines (TNF-α, IL-6, IL-1β, MCP-1, MPO and HMGB1), oxidative stress (ROS generation, MDA), endoplasmic-reticulum (ER) stress (protein levels of CHOP, GRP78, GRP94, IRE1α, and ATF6), and cardiac apoptosis following CLP were inhibited by T0901317 treatment in wild-type mice but not in SIRT1-/- mice. Mechanistically, T0901317 enhanced SIRT1 signaling and the subsequent deacetylation and activation of antioxidative FoxO1 and anti-ER stress HSF1, as well as the deacetylation and inhibition of pro-inflammatory NF-ΚB and pro-apoptotic P53, thereby alleviating sepsis-induced myocardial injury and dysfunction. Our data support the promise of LXR activation as an effective strategy for relieving heart septic injury.
[Display omitted]
•Reduced SIRT1 signaling exacerbates sepsis-induced myocardial injury.•LXR agonist T0901317 mitigates sepsis-induced myocardial injury.•T0901317 attenuates oxidative stress, ER stress, inflammation, and apoptosis.•SIRT1 signaling is strongly involved in the protective effects of LXR agonist. |
doi_str_mv | 10.1016/j.freeradbiomed.2017.10.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1949693036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0891584917307906</els_id><sourcerecordid>1949693036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-45bb884152258d74a7267a544aace600f368268bff3832f005235e116cef26493</originalsourceid><addsrcrecordid>eNqNUU2LFDEQDaK44-pfkIAXLz3mozud4EmW1RUWBFHwFtLpSpuhOxmT9OL8Gv-q6Z3dgzdPCfVe1at6D6E3lOwpoeLdYe8SQDLj4OMC454R2ldkT0j3BO2o7HnTdko8RTsiFW062aoL9CLnAyGk7bh8ji6YVIqznuzQn68wrhZGnP0MoWAfXEyLKT4GnGBaZ1NiwrTCUzCzDxOG38ZCGkyBjDMcs8-ND-cZyylak0Zv5jrnsKYTNqFWffHTPb38BHxMsYAt_g4wOFd_ODps8FwLCf-omhaOm6SZYvC5vETPnJkzvHp4L9H3j9ffrm6a2y-fPl99uG0sl7zUg4dBypZ2jHVy7FvTM9Gbrm1NXVYQ4riQTMjBuUpnrlrFeAeUCguOiVbxS_T2PLfu92uFXPTis4V5NgHimjVVrRKKEy4q9f2ZalPMOYHTx-QXk06aEr0lpA_6n4T0ltAGVtna_fpBaB027LH3MZJKuD4ToJ575yHpbD2E6q-v5hQ9Rv9fQn8B1W2tFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1949693036</pqid></control><display><type>article</type><title>Reduced silent information regulator 1 signaling exacerbates sepsis-induced myocardial injury and mitigates the protective effect of a liver X receptor agonist</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Han, Dong ; Li, Xiang ; Li, Shuang ; Su, Tao ; Fan, Li ; Fan, Wen-Si ; Qiao, Hong-Yu ; Chen, Jiang-Wei ; Fan, Miao-Miao ; Li, Xiu-Juan ; Wang, Ya-Bin ; Ma, Sai ; Qiu, Ya ; Tian, Zu-Hong ; Cao, Feng</creator><creatorcontrib>Han, Dong ; Li, Xiang ; Li, Shuang ; Su, Tao ; Fan, Li ; Fan, Wen-Si ; Qiao, Hong-Yu ; Chen, Jiang-Wei ; Fan, Miao-Miao ; Li, Xiu-Juan ; Wang, Ya-Bin ; Ma, Sai ; Qiu, Ya ; Tian, Zu-Hong ; Cao, Feng</creatorcontrib><description>Myocardial injury and dysfunction are critical manifestations of sepsis. Previous studies have reported that liver X receptor (LXR) activation is protective during sepsis. However, whether LXR activation protects against septic heart injury and its underlying mechanisms remain elusive. This study was designed to determine the role of LXR activation in the septic heart with a focus on SIRT1 (silent information regulator 1) signaling. Male cardiac-specific SIRT1 knockout mice (SIRT1-/-) and their wild-type littermates were subjected to sepsis by cecal ligation and puncture (CLP) in the presence or absence of LXR agonist T0901317. The survival rate of mice was recorded during the 7-day period post CLP. Our results demonstrated that SIRT1-/- mice suffered from exacerbated mortality and myocardial injury in comparison with their wild-type littermates. Meanwhile, T0901317 treatment improved mice survival, accompanied by significant ameliorations of myocardial injury and dysfunction in wild-type mice but not in SIRT1-/- mice. Furthermore, the levels of myocardial inflammatory cytokines (TNF-α, IL-6, IL-1β, MCP-1, MPO and HMGB1), oxidative stress (ROS generation, MDA), endoplasmic-reticulum (ER) stress (protein levels of CHOP, GRP78, GRP94, IRE1α, and ATF6), and cardiac apoptosis following CLP were inhibited by T0901317 treatment in wild-type mice but not in SIRT1-/- mice. Mechanistically, T0901317 enhanced SIRT1 signaling and the subsequent deacetylation and activation of antioxidative FoxO1 and anti-ER stress HSF1, as well as the deacetylation and inhibition of pro-inflammatory NF-ΚB and pro-apoptotic P53, thereby alleviating sepsis-induced myocardial injury and dysfunction. Our data support the promise of LXR activation as an effective strategy for relieving heart septic injury.
[Display omitted]
•Reduced SIRT1 signaling exacerbates sepsis-induced myocardial injury.•LXR agonist T0901317 mitigates sepsis-induced myocardial injury.•T0901317 attenuates oxidative stress, ER stress, inflammation, and apoptosis.•SIRT1 signaling is strongly involved in the protective effects of LXR agonist.</description><identifier>ISSN: 0891-5849</identifier><identifier>EISSN: 1873-4596</identifier><identifier>DOI: 10.1016/j.freeradbiomed.2017.10.005</identifier><identifier>PMID: 28993270</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Anticholesteremic Agents - pharmacology ; Apoptosis ; Chemokine CCL2 - genetics ; Chemokine CCL2 - metabolism ; Endoplasmic Reticulum Chaperone BiP ; Endoplasmic-reticulum stress ; Forkhead Box Protein O1 - genetics ; Forkhead Box Protein O1 - metabolism ; Gene Expression Regulation ; Heart ; Heart Injuries - drug therapy ; Heart Injuries - genetics ; Heart Injuries - mortality ; Heart Injuries - pathology ; Heat Shock Transcription Factors - genetics ; Heat Shock Transcription Factors - metabolism ; Heat-Shock Proteins - genetics ; Heat-Shock Proteins - metabolism ; HMGB1 Protein - genetics ; HMGB1 Protein - metabolism ; Hydrocarbons, Fluorinated - pharmacology ; Inflammation ; Interleukin-1beta - genetics ; Interleukin-1beta - metabolism ; Interleukin-6 - genetics ; Interleukin-6 - metabolism ; Liver X receptor ; Liver X Receptors - agonists ; Liver X Receptors - genetics ; Liver X Receptors - metabolism ; Male ; Mice ; Mice, Knockout ; Myocardium - metabolism ; Myocardium - pathology ; Oxidative stress ; Peroxidase - genetics ; Peroxidase - metabolism ; Sepsis ; Sepsis - drug therapy ; Sepsis - genetics ; Sepsis - mortality ; Sepsis - pathology ; Signal Transduction ; SIRT1 ; Sirtuin 1 - deficiency ; Sirtuin 1 - genetics ; Sulfonamides - pharmacology ; Survival Analysis ; Transcription Factor CHOP - genetics ; Transcription Factor CHOP - metabolism ; Tumor Necrosis Factor-alpha - genetics ; Tumor Necrosis Factor-alpha - metabolism</subject><ispartof>Free radical biology & medicine, 2017-12, Vol.113, p.291-303</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-45bb884152258d74a7267a544aace600f368268bff3832f005235e116cef26493</citedby><cites>FETCH-LOGICAL-c383t-45bb884152258d74a7267a544aace600f368268bff3832f005235e116cef26493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0891584917307906$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28993270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Dong</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Su, Tao</creatorcontrib><creatorcontrib>Fan, Li</creatorcontrib><creatorcontrib>Fan, Wen-Si</creatorcontrib><creatorcontrib>Qiao, Hong-Yu</creatorcontrib><creatorcontrib>Chen, Jiang-Wei</creatorcontrib><creatorcontrib>Fan, Miao-Miao</creatorcontrib><creatorcontrib>Li, Xiu-Juan</creatorcontrib><creatorcontrib>Wang, Ya-Bin</creatorcontrib><creatorcontrib>Ma, Sai</creatorcontrib><creatorcontrib>Qiu, Ya</creatorcontrib><creatorcontrib>Tian, Zu-Hong</creatorcontrib><creatorcontrib>Cao, Feng</creatorcontrib><title>Reduced silent information regulator 1 signaling exacerbates sepsis-induced myocardial injury and mitigates the protective effect of a liver X receptor agonist</title><title>Free radical biology & medicine</title><addtitle>Free Radic Biol Med</addtitle><description>Myocardial injury and dysfunction are critical manifestations of sepsis. Previous studies have reported that liver X receptor (LXR) activation is protective during sepsis. However, whether LXR activation protects against septic heart injury and its underlying mechanisms remain elusive. This study was designed to determine the role of LXR activation in the septic heart with a focus on SIRT1 (silent information regulator 1) signaling. Male cardiac-specific SIRT1 knockout mice (SIRT1-/-) and their wild-type littermates were subjected to sepsis by cecal ligation and puncture (CLP) in the presence or absence of LXR agonist T0901317. The survival rate of mice was recorded during the 7-day period post CLP. Our results demonstrated that SIRT1-/- mice suffered from exacerbated mortality and myocardial injury in comparison with their wild-type littermates. Meanwhile, T0901317 treatment improved mice survival, accompanied by significant ameliorations of myocardial injury and dysfunction in wild-type mice but not in SIRT1-/- mice. Furthermore, the levels of myocardial inflammatory cytokines (TNF-α, IL-6, IL-1β, MCP-1, MPO and HMGB1), oxidative stress (ROS generation, MDA), endoplasmic-reticulum (ER) stress (protein levels of CHOP, GRP78, GRP94, IRE1α, and ATF6), and cardiac apoptosis following CLP were inhibited by T0901317 treatment in wild-type mice but not in SIRT1-/- mice. Mechanistically, T0901317 enhanced SIRT1 signaling and the subsequent deacetylation and activation of antioxidative FoxO1 and anti-ER stress HSF1, as well as the deacetylation and inhibition of pro-inflammatory NF-ΚB and pro-apoptotic P53, thereby alleviating sepsis-induced myocardial injury and dysfunction. Our data support the promise of LXR activation as an effective strategy for relieving heart septic injury.
[Display omitted]
•Reduced SIRT1 signaling exacerbates sepsis-induced myocardial injury.•LXR agonist T0901317 mitigates sepsis-induced myocardial injury.•T0901317 attenuates oxidative stress, ER stress, inflammation, and apoptosis.•SIRT1 signaling is strongly involved in the protective effects of LXR agonist.</description><subject>Animals</subject><subject>Anticholesteremic Agents - pharmacology</subject><subject>Apoptosis</subject><subject>Chemokine CCL2 - genetics</subject><subject>Chemokine CCL2 - metabolism</subject><subject>Endoplasmic Reticulum Chaperone BiP</subject><subject>Endoplasmic-reticulum stress</subject><subject>Forkhead Box Protein O1 - genetics</subject><subject>Forkhead Box Protein O1 - metabolism</subject><subject>Gene Expression Regulation</subject><subject>Heart</subject><subject>Heart Injuries - drug therapy</subject><subject>Heart Injuries - genetics</subject><subject>Heart Injuries - mortality</subject><subject>Heart Injuries - pathology</subject><subject>Heat Shock Transcription Factors - genetics</subject><subject>Heat Shock Transcription Factors - metabolism</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>HMGB1 Protein - genetics</subject><subject>HMGB1 Protein - metabolism</subject><subject>Hydrocarbons, Fluorinated - pharmacology</subject><subject>Inflammation</subject><subject>Interleukin-1beta - genetics</subject><subject>Interleukin-1beta - metabolism</subject><subject>Interleukin-6 - genetics</subject><subject>Interleukin-6 - metabolism</subject><subject>Liver X receptor</subject><subject>Liver X Receptors - agonists</subject><subject>Liver X Receptors - genetics</subject><subject>Liver X Receptors - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Myocardium - metabolism</subject><subject>Myocardium - pathology</subject><subject>Oxidative stress</subject><subject>Peroxidase - genetics</subject><subject>Peroxidase - metabolism</subject><subject>Sepsis</subject><subject>Sepsis - drug therapy</subject><subject>Sepsis - genetics</subject><subject>Sepsis - mortality</subject><subject>Sepsis - pathology</subject><subject>Signal Transduction</subject><subject>SIRT1</subject><subject>Sirtuin 1 - deficiency</subject><subject>Sirtuin 1 - genetics</subject><subject>Sulfonamides - pharmacology</subject><subject>Survival Analysis</subject><subject>Transcription Factor CHOP - genetics</subject><subject>Transcription Factor CHOP - metabolism</subject><subject>Tumor Necrosis Factor-alpha - genetics</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><issn>0891-5849</issn><issn>1873-4596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUU2LFDEQDaK44-pfkIAXLz3mozud4EmW1RUWBFHwFtLpSpuhOxmT9OL8Gv-q6Z3dgzdPCfVe1at6D6E3lOwpoeLdYe8SQDLj4OMC454R2ldkT0j3BO2o7HnTdko8RTsiFW062aoL9CLnAyGk7bh8ji6YVIqznuzQn68wrhZGnP0MoWAfXEyLKT4GnGBaZ1NiwrTCUzCzDxOG38ZCGkyBjDMcs8-ND-cZyylak0Zv5jrnsKYTNqFWffHTPb38BHxMsYAt_g4wOFd_ODps8FwLCf-omhaOm6SZYvC5vETPnJkzvHp4L9H3j9ffrm6a2y-fPl99uG0sl7zUg4dBypZ2jHVy7FvTM9Gbrm1NXVYQ4riQTMjBuUpnrlrFeAeUCguOiVbxS_T2PLfu92uFXPTis4V5NgHimjVVrRKKEy4q9f2ZalPMOYHTx-QXk06aEr0lpA_6n4T0ltAGVtna_fpBaB027LH3MZJKuD4ToJ575yHpbD2E6q-v5hQ9Rv9fQn8B1W2tFg</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Han, Dong</creator><creator>Li, Xiang</creator><creator>Li, Shuang</creator><creator>Su, Tao</creator><creator>Fan, Li</creator><creator>Fan, Wen-Si</creator><creator>Qiao, Hong-Yu</creator><creator>Chen, Jiang-Wei</creator><creator>Fan, Miao-Miao</creator><creator>Li, Xiu-Juan</creator><creator>Wang, Ya-Bin</creator><creator>Ma, Sai</creator><creator>Qiu, Ya</creator><creator>Tian, Zu-Hong</creator><creator>Cao, Feng</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201712</creationdate><title>Reduced silent information regulator 1 signaling exacerbates sepsis-induced myocardial injury and mitigates the protective effect of a liver X receptor agonist</title><author>Han, Dong ; Li, Xiang ; Li, Shuang ; Su, Tao ; Fan, Li ; Fan, Wen-Si ; Qiao, Hong-Yu ; Chen, Jiang-Wei ; Fan, Miao-Miao ; Li, Xiu-Juan ; Wang, Ya-Bin ; Ma, Sai ; Qiu, Ya ; Tian, Zu-Hong ; Cao, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-45bb884152258d74a7267a544aace600f368268bff3832f005235e116cef26493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Anticholesteremic Agents - pharmacology</topic><topic>Apoptosis</topic><topic>Chemokine CCL2 - genetics</topic><topic>Chemokine CCL2 - metabolism</topic><topic>Endoplasmic Reticulum Chaperone BiP</topic><topic>Endoplasmic-reticulum stress</topic><topic>Forkhead Box Protein O1 - genetics</topic><topic>Forkhead Box Protein O1 - metabolism</topic><topic>Gene Expression Regulation</topic><topic>Heart</topic><topic>Heart Injuries - drug therapy</topic><topic>Heart Injuries - genetics</topic><topic>Heart Injuries - mortality</topic><topic>Heart Injuries - pathology</topic><topic>Heat Shock Transcription Factors - genetics</topic><topic>Heat Shock Transcription Factors - metabolism</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>HMGB1 Protein - genetics</topic><topic>HMGB1 Protein - metabolism</topic><topic>Hydrocarbons, Fluorinated - pharmacology</topic><topic>Inflammation</topic><topic>Interleukin-1beta - genetics</topic><topic>Interleukin-1beta - metabolism</topic><topic>Interleukin-6 - genetics</topic><topic>Interleukin-6 - metabolism</topic><topic>Liver X receptor</topic><topic>Liver X Receptors - agonists</topic><topic>Liver X Receptors - genetics</topic><topic>Liver X Receptors - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Myocardium - metabolism</topic><topic>Myocardium - pathology</topic><topic>Oxidative stress</topic><topic>Peroxidase - genetics</topic><topic>Peroxidase - metabolism</topic><topic>Sepsis</topic><topic>Sepsis - drug therapy</topic><topic>Sepsis - genetics</topic><topic>Sepsis - mortality</topic><topic>Sepsis - pathology</topic><topic>Signal Transduction</topic><topic>SIRT1</topic><topic>Sirtuin 1 - deficiency</topic><topic>Sirtuin 1 - genetics</topic><topic>Sulfonamides - pharmacology</topic><topic>Survival Analysis</topic><topic>Transcription Factor CHOP - genetics</topic><topic>Transcription Factor CHOP - metabolism</topic><topic>Tumor Necrosis Factor-alpha - genetics</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Dong</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Su, Tao</creatorcontrib><creatorcontrib>Fan, Li</creatorcontrib><creatorcontrib>Fan, Wen-Si</creatorcontrib><creatorcontrib>Qiao, Hong-Yu</creatorcontrib><creatorcontrib>Chen, Jiang-Wei</creatorcontrib><creatorcontrib>Fan, Miao-Miao</creatorcontrib><creatorcontrib>Li, Xiu-Juan</creatorcontrib><creatorcontrib>Wang, Ya-Bin</creatorcontrib><creatorcontrib>Ma, Sai</creatorcontrib><creatorcontrib>Qiu, Ya</creatorcontrib><creatorcontrib>Tian, Zu-Hong</creatorcontrib><creatorcontrib>Cao, Feng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Free radical biology & medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Dong</au><au>Li, Xiang</au><au>Li, Shuang</au><au>Su, Tao</au><au>Fan, Li</au><au>Fan, Wen-Si</au><au>Qiao, Hong-Yu</au><au>Chen, Jiang-Wei</au><au>Fan, Miao-Miao</au><au>Li, Xiu-Juan</au><au>Wang, Ya-Bin</au><au>Ma, Sai</au><au>Qiu, Ya</au><au>Tian, Zu-Hong</au><au>Cao, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced silent information regulator 1 signaling exacerbates sepsis-induced myocardial injury and mitigates the protective effect of a liver X receptor agonist</atitle><jtitle>Free radical biology & medicine</jtitle><addtitle>Free Radic Biol Med</addtitle><date>2017-12</date><risdate>2017</risdate><volume>113</volume><spage>291</spage><epage>303</epage><pages>291-303</pages><issn>0891-5849</issn><eissn>1873-4596</eissn><abstract>Myocardial injury and dysfunction are critical manifestations of sepsis. Previous studies have reported that liver X receptor (LXR) activation is protective during sepsis. However, whether LXR activation protects against septic heart injury and its underlying mechanisms remain elusive. This study was designed to determine the role of LXR activation in the septic heart with a focus on SIRT1 (silent information regulator 1) signaling. Male cardiac-specific SIRT1 knockout mice (SIRT1-/-) and their wild-type littermates were subjected to sepsis by cecal ligation and puncture (CLP) in the presence or absence of LXR agonist T0901317. The survival rate of mice was recorded during the 7-day period post CLP. Our results demonstrated that SIRT1-/- mice suffered from exacerbated mortality and myocardial injury in comparison with their wild-type littermates. Meanwhile, T0901317 treatment improved mice survival, accompanied by significant ameliorations of myocardial injury and dysfunction in wild-type mice but not in SIRT1-/- mice. Furthermore, the levels of myocardial inflammatory cytokines (TNF-α, IL-6, IL-1β, MCP-1, MPO and HMGB1), oxidative stress (ROS generation, MDA), endoplasmic-reticulum (ER) stress (protein levels of CHOP, GRP78, GRP94, IRE1α, and ATF6), and cardiac apoptosis following CLP were inhibited by T0901317 treatment in wild-type mice but not in SIRT1-/- mice. Mechanistically, T0901317 enhanced SIRT1 signaling and the subsequent deacetylation and activation of antioxidative FoxO1 and anti-ER stress HSF1, as well as the deacetylation and inhibition of pro-inflammatory NF-ΚB and pro-apoptotic P53, thereby alleviating sepsis-induced myocardial injury and dysfunction. Our data support the promise of LXR activation as an effective strategy for relieving heart septic injury.
[Display omitted]
•Reduced SIRT1 signaling exacerbates sepsis-induced myocardial injury.•LXR agonist T0901317 mitigates sepsis-induced myocardial injury.•T0901317 attenuates oxidative stress, ER stress, inflammation, and apoptosis.•SIRT1 signaling is strongly involved in the protective effects of LXR agonist.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28993270</pmid><doi>10.1016/j.freeradbiomed.2017.10.005</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0891-5849 |
ispartof | Free radical biology & medicine, 2017-12, Vol.113, p.291-303 |
issn | 0891-5849 1873-4596 |
language | eng |
recordid | cdi_proquest_miscellaneous_1949693036 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Anticholesteremic Agents - pharmacology Apoptosis Chemokine CCL2 - genetics Chemokine CCL2 - metabolism Endoplasmic Reticulum Chaperone BiP Endoplasmic-reticulum stress Forkhead Box Protein O1 - genetics Forkhead Box Protein O1 - metabolism Gene Expression Regulation Heart Heart Injuries - drug therapy Heart Injuries - genetics Heart Injuries - mortality Heart Injuries - pathology Heat Shock Transcription Factors - genetics Heat Shock Transcription Factors - metabolism Heat-Shock Proteins - genetics Heat-Shock Proteins - metabolism HMGB1 Protein - genetics HMGB1 Protein - metabolism Hydrocarbons, Fluorinated - pharmacology Inflammation Interleukin-1beta - genetics Interleukin-1beta - metabolism Interleukin-6 - genetics Interleukin-6 - metabolism Liver X receptor Liver X Receptors - agonists Liver X Receptors - genetics Liver X Receptors - metabolism Male Mice Mice, Knockout Myocardium - metabolism Myocardium - pathology Oxidative stress Peroxidase - genetics Peroxidase - metabolism Sepsis Sepsis - drug therapy Sepsis - genetics Sepsis - mortality Sepsis - pathology Signal Transduction SIRT1 Sirtuin 1 - deficiency Sirtuin 1 - genetics Sulfonamides - pharmacology Survival Analysis Transcription Factor CHOP - genetics Transcription Factor CHOP - metabolism Tumor Necrosis Factor-alpha - genetics Tumor Necrosis Factor-alpha - metabolism |
title | Reduced silent information regulator 1 signaling exacerbates sepsis-induced myocardial injury and mitigates the protective effect of a liver X receptor agonist |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A52%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20silent%20information%20regulator%201%20signaling%20exacerbates%20sepsis-induced%20myocardial%20injury%20and%20mitigates%20the%20protective%20effect%20of%20a%20liver%20X%20receptor%20agonist&rft.jtitle=Free%20radical%20biology%20&%20medicine&rft.au=Han,%20Dong&rft.date=2017-12&rft.volume=113&rft.spage=291&rft.epage=303&rft.pages=291-303&rft.issn=0891-5849&rft.eissn=1873-4596&rft_id=info:doi/10.1016/j.freeradbiomed.2017.10.005&rft_dat=%3Cproquest_cross%3E1949693036%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1949693036&rft_id=info:pmid/28993270&rft_els_id=S0891584917307906&rfr_iscdi=true |