Learning ensemble classifiers for diabetic retinopathy assessment
•Two ensemble classifiers are proposed for the diagnosis of diabetic retinopathy.•Classifiers are based on medical attributes available in the health care record.•Methods generate linguistic rules with two approaches: fuzzy and rough sets.•The best achieved accuracy is 84%.•Using these classifiers f...
Gespeichert in:
Veröffentlicht in: | Artificial intelligence in medicine 2018-04, Vol.85, p.50-63 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 63 |
---|---|
container_issue | |
container_start_page | 50 |
container_title | Artificial intelligence in medicine |
container_volume | 85 |
creator | Saleh, Emran Błaszczyński, Jerzy Moreno, Antonio Valls, Aida Romero-Aroca, Pedro de la Riva-Fernández, Sofia Słowiński, Roman |
description | •Two ensemble classifiers are proposed for the diagnosis of diabetic retinopathy.•Classifiers are based on medical attributes available in the health care record.•Methods generate linguistic rules with two approaches: fuzzy and rough sets.•The best achieved accuracy is 84%.•Using these classifiers for decision support may avoid unnecessary medical tests.
Diabetic retinopathy is one of the most common comorbidities of diabetes. Unfortunately, the recommended annual screening of the eye fundus of diabetic patients is too resource-consuming. Therefore, it is necessary to develop tools that may help doctors to determine the risk of each patient to attain this condition, so that patients with a low risk may be screened less frequently and the use of resources can be improved. This paper explores the use of two kinds of ensemble classifiers learned from data: fuzzy random forest and dominance-based rough set balanced rule ensemble. These classifiers use a small set of attributes which represent main risk factors to determine whether a patient is in risk of developing diabetic retinopathy. The levels of specificity and sensitivity obtained in the presented study are over 80%. This study is thus a first successful step towards the construction of a personalized decision support system that could help physicians in daily clinical practice. |
doi_str_mv | 10.1016/j.artmed.2017.09.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1949692283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0933365717300593</els_id><sourcerecordid>1949692283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-3abf137545ebb1f19855df5fab34d866f886b433c2e306ceb97153cabebb84cb3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlb_gcgeveyabLLZ5CKU4hcUvOg5JNmJpuxHTbZC_70p2169zBzmmXmZB6FbgguCCX_YFDqMHTRFiUldYFlgzM_QnIia5qXg-BzNsaQ0p7yqZ-gqxg3GuGaEX6JZKaSkpGRztFyDDr3vvzLoI3Smhcy2OkbvPISYuSFkjdcGRm-zkGo_bPX4vc8SAjF20I_X6MLpNsLNsS_Q5_PTx-o1X7-_vK2W69wyQsecauMIrStWgTHEESmqqnGV04ayRnDuhOCGUWpLoJhbMLImFbUp2hjBrKELdD_d3YbhZwdxVJ2PFtpW9zDsoiKSSS7LUtCEsgm1YYgxgFPb4Dsd9opgdZCnNmqSpw7yFJYqyUtrd8eEnTnMTksnWwl4nABIf_4mQSpaD72Fxgewo2oG_3_CH_WEg1c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1949692283</pqid></control><display><type>article</type><title>Learning ensemble classifiers for diabetic retinopathy assessment</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Saleh, Emran ; Błaszczyński, Jerzy ; Moreno, Antonio ; Valls, Aida ; Romero-Aroca, Pedro ; de la Riva-Fernández, Sofia ; Słowiński, Roman</creator><creatorcontrib>Saleh, Emran ; Błaszczyński, Jerzy ; Moreno, Antonio ; Valls, Aida ; Romero-Aroca, Pedro ; de la Riva-Fernández, Sofia ; Słowiński, Roman</creatorcontrib><description>•Two ensemble classifiers are proposed for the diagnosis of diabetic retinopathy.•Classifiers are based on medical attributes available in the health care record.•Methods generate linguistic rules with two approaches: fuzzy and rough sets.•The best achieved accuracy is 84%.•Using these classifiers for decision support may avoid unnecessary medical tests.
Diabetic retinopathy is one of the most common comorbidities of diabetes. Unfortunately, the recommended annual screening of the eye fundus of diabetic patients is too resource-consuming. Therefore, it is necessary to develop tools that may help doctors to determine the risk of each patient to attain this condition, so that patients with a low risk may be screened less frequently and the use of resources can be improved. This paper explores the use of two kinds of ensemble classifiers learned from data: fuzzy random forest and dominance-based rough set balanced rule ensemble. These classifiers use a small set of attributes which represent main risk factors to determine whether a patient is in risk of developing diabetic retinopathy. The levels of specificity and sensitivity obtained in the presented study are over 80%. This study is thus a first successful step towards the construction of a personalized decision support system that could help physicians in daily clinical practice.</description><identifier>ISSN: 0933-3657</identifier><identifier>EISSN: 1873-2860</identifier><identifier>DOI: 10.1016/j.artmed.2017.09.006</identifier><identifier>PMID: 28993124</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Class imbalance ; Clinical Decision-Making ; Decision support systems ; Decision Support Systems, Clinical ; Decision Support Techniques ; Decision Trees ; Diabetes Mellitus, Type 1 - complications ; Diabetes Mellitus, Type 1 - diagnosis ; Diabetes Mellitus, Type 2 - complications ; Diabetes Mellitus, Type 2 - diagnosis ; Diabetic retinopathy ; Diabetic Retinopathy - diagnosis ; Diabetic Retinopathy - etiology ; Dominance-based rough set approach ; Electronic Health Records ; Ensemble classifiers ; Fuzzy decision trees ; Fuzzy Logic ; Humans ; Machine Learning ; Predictive Value of Tests ; Prognosis ; Random forest ; Reproducibility of Results ; Risk Assessment ; Risk Factors ; Rule-based models ; Time Factors</subject><ispartof>Artificial intelligence in medicine, 2018-04, Vol.85, p.50-63</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright © 2017 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-3abf137545ebb1f19855df5fab34d866f886b433c2e306ceb97153cabebb84cb3</citedby><cites>FETCH-LOGICAL-c413t-3abf137545ebb1f19855df5fab34d866f886b433c2e306ceb97153cabebb84cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.artmed.2017.09.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28993124$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saleh, Emran</creatorcontrib><creatorcontrib>Błaszczyński, Jerzy</creatorcontrib><creatorcontrib>Moreno, Antonio</creatorcontrib><creatorcontrib>Valls, Aida</creatorcontrib><creatorcontrib>Romero-Aroca, Pedro</creatorcontrib><creatorcontrib>de la Riva-Fernández, Sofia</creatorcontrib><creatorcontrib>Słowiński, Roman</creatorcontrib><title>Learning ensemble classifiers for diabetic retinopathy assessment</title><title>Artificial intelligence in medicine</title><addtitle>Artif Intell Med</addtitle><description>•Two ensemble classifiers are proposed for the diagnosis of diabetic retinopathy.•Classifiers are based on medical attributes available in the health care record.•Methods generate linguistic rules with two approaches: fuzzy and rough sets.•The best achieved accuracy is 84%.•Using these classifiers for decision support may avoid unnecessary medical tests.
Diabetic retinopathy is one of the most common comorbidities of diabetes. Unfortunately, the recommended annual screening of the eye fundus of diabetic patients is too resource-consuming. Therefore, it is necessary to develop tools that may help doctors to determine the risk of each patient to attain this condition, so that patients with a low risk may be screened less frequently and the use of resources can be improved. This paper explores the use of two kinds of ensemble classifiers learned from data: fuzzy random forest and dominance-based rough set balanced rule ensemble. These classifiers use a small set of attributes which represent main risk factors to determine whether a patient is in risk of developing diabetic retinopathy. The levels of specificity and sensitivity obtained in the presented study are over 80%. This study is thus a first successful step towards the construction of a personalized decision support system that could help physicians in daily clinical practice.</description><subject>Class imbalance</subject><subject>Clinical Decision-Making</subject><subject>Decision support systems</subject><subject>Decision Support Systems, Clinical</subject><subject>Decision Support Techniques</subject><subject>Decision Trees</subject><subject>Diabetes Mellitus, Type 1 - complications</subject><subject>Diabetes Mellitus, Type 1 - diagnosis</subject><subject>Diabetes Mellitus, Type 2 - complications</subject><subject>Diabetes Mellitus, Type 2 - diagnosis</subject><subject>Diabetic retinopathy</subject><subject>Diabetic Retinopathy - diagnosis</subject><subject>Diabetic Retinopathy - etiology</subject><subject>Dominance-based rough set approach</subject><subject>Electronic Health Records</subject><subject>Ensemble classifiers</subject><subject>Fuzzy decision trees</subject><subject>Fuzzy Logic</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Predictive Value of Tests</subject><subject>Prognosis</subject><subject>Random forest</subject><subject>Reproducibility of Results</subject><subject>Risk Assessment</subject><subject>Risk Factors</subject><subject>Rule-based models</subject><subject>Time Factors</subject><issn>0933-3657</issn><issn>1873-2860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMotlb_gcgeveyabLLZ5CKU4hcUvOg5JNmJpuxHTbZC_70p2169zBzmmXmZB6FbgguCCX_YFDqMHTRFiUldYFlgzM_QnIia5qXg-BzNsaQ0p7yqZ-gqxg3GuGaEX6JZKaSkpGRztFyDDr3vvzLoI3Smhcy2OkbvPISYuSFkjdcGRm-zkGo_bPX4vc8SAjF20I_X6MLpNsLNsS_Q5_PTx-o1X7-_vK2W69wyQsecauMIrStWgTHEESmqqnGV04ayRnDuhOCGUWpLoJhbMLImFbUp2hjBrKELdD_d3YbhZwdxVJ2PFtpW9zDsoiKSSS7LUtCEsgm1YYgxgFPb4Dsd9opgdZCnNmqSpw7yFJYqyUtrd8eEnTnMTksnWwl4nABIf_4mQSpaD72Fxgewo2oG_3_CH_WEg1c</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Saleh, Emran</creator><creator>Błaszczyński, Jerzy</creator><creator>Moreno, Antonio</creator><creator>Valls, Aida</creator><creator>Romero-Aroca, Pedro</creator><creator>de la Riva-Fernández, Sofia</creator><creator>Słowiński, Roman</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201804</creationdate><title>Learning ensemble classifiers for diabetic retinopathy assessment</title><author>Saleh, Emran ; Błaszczyński, Jerzy ; Moreno, Antonio ; Valls, Aida ; Romero-Aroca, Pedro ; de la Riva-Fernández, Sofia ; Słowiński, Roman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-3abf137545ebb1f19855df5fab34d866f886b433c2e306ceb97153cabebb84cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Class imbalance</topic><topic>Clinical Decision-Making</topic><topic>Decision support systems</topic><topic>Decision Support Systems, Clinical</topic><topic>Decision Support Techniques</topic><topic>Decision Trees</topic><topic>Diabetes Mellitus, Type 1 - complications</topic><topic>Diabetes Mellitus, Type 1 - diagnosis</topic><topic>Diabetes Mellitus, Type 2 - complications</topic><topic>Diabetes Mellitus, Type 2 - diagnosis</topic><topic>Diabetic retinopathy</topic><topic>Diabetic Retinopathy - diagnosis</topic><topic>Diabetic Retinopathy - etiology</topic><topic>Dominance-based rough set approach</topic><topic>Electronic Health Records</topic><topic>Ensemble classifiers</topic><topic>Fuzzy decision trees</topic><topic>Fuzzy Logic</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Predictive Value of Tests</topic><topic>Prognosis</topic><topic>Random forest</topic><topic>Reproducibility of Results</topic><topic>Risk Assessment</topic><topic>Risk Factors</topic><topic>Rule-based models</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saleh, Emran</creatorcontrib><creatorcontrib>Błaszczyński, Jerzy</creatorcontrib><creatorcontrib>Moreno, Antonio</creatorcontrib><creatorcontrib>Valls, Aida</creatorcontrib><creatorcontrib>Romero-Aroca, Pedro</creatorcontrib><creatorcontrib>de la Riva-Fernández, Sofia</creatorcontrib><creatorcontrib>Słowiński, Roman</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Artificial intelligence in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saleh, Emran</au><au>Błaszczyński, Jerzy</au><au>Moreno, Antonio</au><au>Valls, Aida</au><au>Romero-Aroca, Pedro</au><au>de la Riva-Fernández, Sofia</au><au>Słowiński, Roman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning ensemble classifiers for diabetic retinopathy assessment</atitle><jtitle>Artificial intelligence in medicine</jtitle><addtitle>Artif Intell Med</addtitle><date>2018-04</date><risdate>2018</risdate><volume>85</volume><spage>50</spage><epage>63</epage><pages>50-63</pages><issn>0933-3657</issn><eissn>1873-2860</eissn><abstract>•Two ensemble classifiers are proposed for the diagnosis of diabetic retinopathy.•Classifiers are based on medical attributes available in the health care record.•Methods generate linguistic rules with two approaches: fuzzy and rough sets.•The best achieved accuracy is 84%.•Using these classifiers for decision support may avoid unnecessary medical tests.
Diabetic retinopathy is one of the most common comorbidities of diabetes. Unfortunately, the recommended annual screening of the eye fundus of diabetic patients is too resource-consuming. Therefore, it is necessary to develop tools that may help doctors to determine the risk of each patient to attain this condition, so that patients with a low risk may be screened less frequently and the use of resources can be improved. This paper explores the use of two kinds of ensemble classifiers learned from data: fuzzy random forest and dominance-based rough set balanced rule ensemble. These classifiers use a small set of attributes which represent main risk factors to determine whether a patient is in risk of developing diabetic retinopathy. The levels of specificity and sensitivity obtained in the presented study are over 80%. This study is thus a first successful step towards the construction of a personalized decision support system that could help physicians in daily clinical practice.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>28993124</pmid><doi>10.1016/j.artmed.2017.09.006</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0933-3657 |
ispartof | Artificial intelligence in medicine, 2018-04, Vol.85, p.50-63 |
issn | 0933-3657 1873-2860 |
language | eng |
recordid | cdi_proquest_miscellaneous_1949692283 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Class imbalance Clinical Decision-Making Decision support systems Decision Support Systems, Clinical Decision Support Techniques Decision Trees Diabetes Mellitus, Type 1 - complications Diabetes Mellitus, Type 1 - diagnosis Diabetes Mellitus, Type 2 - complications Diabetes Mellitus, Type 2 - diagnosis Diabetic retinopathy Diabetic Retinopathy - diagnosis Diabetic Retinopathy - etiology Dominance-based rough set approach Electronic Health Records Ensemble classifiers Fuzzy decision trees Fuzzy Logic Humans Machine Learning Predictive Value of Tests Prognosis Random forest Reproducibility of Results Risk Assessment Risk Factors Rule-based models Time Factors |
title | Learning ensemble classifiers for diabetic retinopathy assessment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A39%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20ensemble%20classifiers%20for%20diabetic%20retinopathy%20assessment&rft.jtitle=Artificial%20intelligence%20in%20medicine&rft.au=Saleh,%20Emran&rft.date=2018-04&rft.volume=85&rft.spage=50&rft.epage=63&rft.pages=50-63&rft.issn=0933-3657&rft.eissn=1873-2860&rft_id=info:doi/10.1016/j.artmed.2017.09.006&rft_dat=%3Cproquest_cross%3E1949692283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1949692283&rft_id=info:pmid/28993124&rft_els_id=S0933365717300593&rfr_iscdi=true |