Learning ensemble classifiers for diabetic retinopathy assessment

•Two ensemble classifiers are proposed for the diagnosis of diabetic retinopathy.•Classifiers are based on medical attributes available in the health care record.•Methods generate linguistic rules with two approaches: fuzzy and rough sets.•The best achieved accuracy is 84%.•Using these classifiers f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence in medicine 2018-04, Vol.85, p.50-63
Hauptverfasser: Saleh, Emran, Błaszczyński, Jerzy, Moreno, Antonio, Valls, Aida, Romero-Aroca, Pedro, de la Riva-Fernández, Sofia, Słowiński, Roman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 63
container_issue
container_start_page 50
container_title Artificial intelligence in medicine
container_volume 85
creator Saleh, Emran
Błaszczyński, Jerzy
Moreno, Antonio
Valls, Aida
Romero-Aroca, Pedro
de la Riva-Fernández, Sofia
Słowiński, Roman
description •Two ensemble classifiers are proposed for the diagnosis of diabetic retinopathy.•Classifiers are based on medical attributes available in the health care record.•Methods generate linguistic rules with two approaches: fuzzy and rough sets.•The best achieved accuracy is 84%.•Using these classifiers for decision support may avoid unnecessary medical tests. Diabetic retinopathy is one of the most common comorbidities of diabetes. Unfortunately, the recommended annual screening of the eye fundus of diabetic patients is too resource-consuming. Therefore, it is necessary to develop tools that may help doctors to determine the risk of each patient to attain this condition, so that patients with a low risk may be screened less frequently and the use of resources can be improved. This paper explores the use of two kinds of ensemble classifiers learned from data: fuzzy random forest and dominance-based rough set balanced rule ensemble. These classifiers use a small set of attributes which represent main risk factors to determine whether a patient is in risk of developing diabetic retinopathy. The levels of specificity and sensitivity obtained in the presented study are over 80%. This study is thus a first successful step towards the construction of a personalized decision support system that could help physicians in daily clinical practice.
doi_str_mv 10.1016/j.artmed.2017.09.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1949692283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0933365717300593</els_id><sourcerecordid>1949692283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-3abf137545ebb1f19855df5fab34d866f886b433c2e306ceb97153cabebb84cb3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlb_gcgeveyabLLZ5CKU4hcUvOg5JNmJpuxHTbZC_70p2169zBzmmXmZB6FbgguCCX_YFDqMHTRFiUldYFlgzM_QnIia5qXg-BzNsaQ0p7yqZ-gqxg3GuGaEX6JZKaSkpGRztFyDDr3vvzLoI3Smhcy2OkbvPISYuSFkjdcGRm-zkGo_bPX4vc8SAjF20I_X6MLpNsLNsS_Q5_PTx-o1X7-_vK2W69wyQsecauMIrStWgTHEESmqqnGV04ayRnDuhOCGUWpLoJhbMLImFbUp2hjBrKELdD_d3YbhZwdxVJ2PFtpW9zDsoiKSSS7LUtCEsgm1YYgxgFPb4Dsd9opgdZCnNmqSpw7yFJYqyUtrd8eEnTnMTksnWwl4nABIf_4mQSpaD72Fxgewo2oG_3_CH_WEg1c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1949692283</pqid></control><display><type>article</type><title>Learning ensemble classifiers for diabetic retinopathy assessment</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Saleh, Emran ; Błaszczyński, Jerzy ; Moreno, Antonio ; Valls, Aida ; Romero-Aroca, Pedro ; de la Riva-Fernández, Sofia ; Słowiński, Roman</creator><creatorcontrib>Saleh, Emran ; Błaszczyński, Jerzy ; Moreno, Antonio ; Valls, Aida ; Romero-Aroca, Pedro ; de la Riva-Fernández, Sofia ; Słowiński, Roman</creatorcontrib><description>•Two ensemble classifiers are proposed for the diagnosis of diabetic retinopathy.•Classifiers are based on medical attributes available in the health care record.•Methods generate linguistic rules with two approaches: fuzzy and rough sets.•The best achieved accuracy is 84%.•Using these classifiers for decision support may avoid unnecessary medical tests. Diabetic retinopathy is one of the most common comorbidities of diabetes. Unfortunately, the recommended annual screening of the eye fundus of diabetic patients is too resource-consuming. Therefore, it is necessary to develop tools that may help doctors to determine the risk of each patient to attain this condition, so that patients with a low risk may be screened less frequently and the use of resources can be improved. This paper explores the use of two kinds of ensemble classifiers learned from data: fuzzy random forest and dominance-based rough set balanced rule ensemble. These classifiers use a small set of attributes which represent main risk factors to determine whether a patient is in risk of developing diabetic retinopathy. The levels of specificity and sensitivity obtained in the presented study are over 80%. This study is thus a first successful step towards the construction of a personalized decision support system that could help physicians in daily clinical practice.</description><identifier>ISSN: 0933-3657</identifier><identifier>EISSN: 1873-2860</identifier><identifier>DOI: 10.1016/j.artmed.2017.09.006</identifier><identifier>PMID: 28993124</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Class imbalance ; Clinical Decision-Making ; Decision support systems ; Decision Support Systems, Clinical ; Decision Support Techniques ; Decision Trees ; Diabetes Mellitus, Type 1 - complications ; Diabetes Mellitus, Type 1 - diagnosis ; Diabetes Mellitus, Type 2 - complications ; Diabetes Mellitus, Type 2 - diagnosis ; Diabetic retinopathy ; Diabetic Retinopathy - diagnosis ; Diabetic Retinopathy - etiology ; Dominance-based rough set approach ; Electronic Health Records ; Ensemble classifiers ; Fuzzy decision trees ; Fuzzy Logic ; Humans ; Machine Learning ; Predictive Value of Tests ; Prognosis ; Random forest ; Reproducibility of Results ; Risk Assessment ; Risk Factors ; Rule-based models ; Time Factors</subject><ispartof>Artificial intelligence in medicine, 2018-04, Vol.85, p.50-63</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright © 2017 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-3abf137545ebb1f19855df5fab34d866f886b433c2e306ceb97153cabebb84cb3</citedby><cites>FETCH-LOGICAL-c413t-3abf137545ebb1f19855df5fab34d866f886b433c2e306ceb97153cabebb84cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.artmed.2017.09.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28993124$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saleh, Emran</creatorcontrib><creatorcontrib>Błaszczyński, Jerzy</creatorcontrib><creatorcontrib>Moreno, Antonio</creatorcontrib><creatorcontrib>Valls, Aida</creatorcontrib><creatorcontrib>Romero-Aroca, Pedro</creatorcontrib><creatorcontrib>de la Riva-Fernández, Sofia</creatorcontrib><creatorcontrib>Słowiński, Roman</creatorcontrib><title>Learning ensemble classifiers for diabetic retinopathy assessment</title><title>Artificial intelligence in medicine</title><addtitle>Artif Intell Med</addtitle><description>•Two ensemble classifiers are proposed for the diagnosis of diabetic retinopathy.•Classifiers are based on medical attributes available in the health care record.•Methods generate linguistic rules with two approaches: fuzzy and rough sets.•The best achieved accuracy is 84%.•Using these classifiers for decision support may avoid unnecessary medical tests. Diabetic retinopathy is one of the most common comorbidities of diabetes. Unfortunately, the recommended annual screening of the eye fundus of diabetic patients is too resource-consuming. Therefore, it is necessary to develop tools that may help doctors to determine the risk of each patient to attain this condition, so that patients with a low risk may be screened less frequently and the use of resources can be improved. This paper explores the use of two kinds of ensemble classifiers learned from data: fuzzy random forest and dominance-based rough set balanced rule ensemble. These classifiers use a small set of attributes which represent main risk factors to determine whether a patient is in risk of developing diabetic retinopathy. The levels of specificity and sensitivity obtained in the presented study are over 80%. This study is thus a first successful step towards the construction of a personalized decision support system that could help physicians in daily clinical practice.</description><subject>Class imbalance</subject><subject>Clinical Decision-Making</subject><subject>Decision support systems</subject><subject>Decision Support Systems, Clinical</subject><subject>Decision Support Techniques</subject><subject>Decision Trees</subject><subject>Diabetes Mellitus, Type 1 - complications</subject><subject>Diabetes Mellitus, Type 1 - diagnosis</subject><subject>Diabetes Mellitus, Type 2 - complications</subject><subject>Diabetes Mellitus, Type 2 - diagnosis</subject><subject>Diabetic retinopathy</subject><subject>Diabetic Retinopathy - diagnosis</subject><subject>Diabetic Retinopathy - etiology</subject><subject>Dominance-based rough set approach</subject><subject>Electronic Health Records</subject><subject>Ensemble classifiers</subject><subject>Fuzzy decision trees</subject><subject>Fuzzy Logic</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Predictive Value of Tests</subject><subject>Prognosis</subject><subject>Random forest</subject><subject>Reproducibility of Results</subject><subject>Risk Assessment</subject><subject>Risk Factors</subject><subject>Rule-based models</subject><subject>Time Factors</subject><issn>0933-3657</issn><issn>1873-2860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMotlb_gcgeveyabLLZ5CKU4hcUvOg5JNmJpuxHTbZC_70p2169zBzmmXmZB6FbgguCCX_YFDqMHTRFiUldYFlgzM_QnIia5qXg-BzNsaQ0p7yqZ-gqxg3GuGaEX6JZKaSkpGRztFyDDr3vvzLoI3Smhcy2OkbvPISYuSFkjdcGRm-zkGo_bPX4vc8SAjF20I_X6MLpNsLNsS_Q5_PTx-o1X7-_vK2W69wyQsecauMIrStWgTHEESmqqnGV04ayRnDuhOCGUWpLoJhbMLImFbUp2hjBrKELdD_d3YbhZwdxVJ2PFtpW9zDsoiKSSS7LUtCEsgm1YYgxgFPb4Dsd9opgdZCnNmqSpw7yFJYqyUtrd8eEnTnMTksnWwl4nABIf_4mQSpaD72Fxgewo2oG_3_CH_WEg1c</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Saleh, Emran</creator><creator>Błaszczyński, Jerzy</creator><creator>Moreno, Antonio</creator><creator>Valls, Aida</creator><creator>Romero-Aroca, Pedro</creator><creator>de la Riva-Fernández, Sofia</creator><creator>Słowiński, Roman</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201804</creationdate><title>Learning ensemble classifiers for diabetic retinopathy assessment</title><author>Saleh, Emran ; Błaszczyński, Jerzy ; Moreno, Antonio ; Valls, Aida ; Romero-Aroca, Pedro ; de la Riva-Fernández, Sofia ; Słowiński, Roman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-3abf137545ebb1f19855df5fab34d866f886b433c2e306ceb97153cabebb84cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Class imbalance</topic><topic>Clinical Decision-Making</topic><topic>Decision support systems</topic><topic>Decision Support Systems, Clinical</topic><topic>Decision Support Techniques</topic><topic>Decision Trees</topic><topic>Diabetes Mellitus, Type 1 - complications</topic><topic>Diabetes Mellitus, Type 1 - diagnosis</topic><topic>Diabetes Mellitus, Type 2 - complications</topic><topic>Diabetes Mellitus, Type 2 - diagnosis</topic><topic>Diabetic retinopathy</topic><topic>Diabetic Retinopathy - diagnosis</topic><topic>Diabetic Retinopathy - etiology</topic><topic>Dominance-based rough set approach</topic><topic>Electronic Health Records</topic><topic>Ensemble classifiers</topic><topic>Fuzzy decision trees</topic><topic>Fuzzy Logic</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Predictive Value of Tests</topic><topic>Prognosis</topic><topic>Random forest</topic><topic>Reproducibility of Results</topic><topic>Risk Assessment</topic><topic>Risk Factors</topic><topic>Rule-based models</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saleh, Emran</creatorcontrib><creatorcontrib>Błaszczyński, Jerzy</creatorcontrib><creatorcontrib>Moreno, Antonio</creatorcontrib><creatorcontrib>Valls, Aida</creatorcontrib><creatorcontrib>Romero-Aroca, Pedro</creatorcontrib><creatorcontrib>de la Riva-Fernández, Sofia</creatorcontrib><creatorcontrib>Słowiński, Roman</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Artificial intelligence in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saleh, Emran</au><au>Błaszczyński, Jerzy</au><au>Moreno, Antonio</au><au>Valls, Aida</au><au>Romero-Aroca, Pedro</au><au>de la Riva-Fernández, Sofia</au><au>Słowiński, Roman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning ensemble classifiers for diabetic retinopathy assessment</atitle><jtitle>Artificial intelligence in medicine</jtitle><addtitle>Artif Intell Med</addtitle><date>2018-04</date><risdate>2018</risdate><volume>85</volume><spage>50</spage><epage>63</epage><pages>50-63</pages><issn>0933-3657</issn><eissn>1873-2860</eissn><abstract>•Two ensemble classifiers are proposed for the diagnosis of diabetic retinopathy.•Classifiers are based on medical attributes available in the health care record.•Methods generate linguistic rules with two approaches: fuzzy and rough sets.•The best achieved accuracy is 84%.•Using these classifiers for decision support may avoid unnecessary medical tests. Diabetic retinopathy is one of the most common comorbidities of diabetes. Unfortunately, the recommended annual screening of the eye fundus of diabetic patients is too resource-consuming. Therefore, it is necessary to develop tools that may help doctors to determine the risk of each patient to attain this condition, so that patients with a low risk may be screened less frequently and the use of resources can be improved. This paper explores the use of two kinds of ensemble classifiers learned from data: fuzzy random forest and dominance-based rough set balanced rule ensemble. These classifiers use a small set of attributes which represent main risk factors to determine whether a patient is in risk of developing diabetic retinopathy. The levels of specificity and sensitivity obtained in the presented study are over 80%. This study is thus a first successful step towards the construction of a personalized decision support system that could help physicians in daily clinical practice.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>28993124</pmid><doi>10.1016/j.artmed.2017.09.006</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0933-3657
ispartof Artificial intelligence in medicine, 2018-04, Vol.85, p.50-63
issn 0933-3657
1873-2860
language eng
recordid cdi_proquest_miscellaneous_1949692283
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Class imbalance
Clinical Decision-Making
Decision support systems
Decision Support Systems, Clinical
Decision Support Techniques
Decision Trees
Diabetes Mellitus, Type 1 - complications
Diabetes Mellitus, Type 1 - diagnosis
Diabetes Mellitus, Type 2 - complications
Diabetes Mellitus, Type 2 - diagnosis
Diabetic retinopathy
Diabetic Retinopathy - diagnosis
Diabetic Retinopathy - etiology
Dominance-based rough set approach
Electronic Health Records
Ensemble classifiers
Fuzzy decision trees
Fuzzy Logic
Humans
Machine Learning
Predictive Value of Tests
Prognosis
Random forest
Reproducibility of Results
Risk Assessment
Risk Factors
Rule-based models
Time Factors
title Learning ensemble classifiers for diabetic retinopathy assessment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A39%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20ensemble%20classifiers%20for%20diabetic%20retinopathy%20assessment&rft.jtitle=Artificial%20intelligence%20in%20medicine&rft.au=Saleh,%20Emran&rft.date=2018-04&rft.volume=85&rft.spage=50&rft.epage=63&rft.pages=50-63&rft.issn=0933-3657&rft.eissn=1873-2860&rft_id=info:doi/10.1016/j.artmed.2017.09.006&rft_dat=%3Cproquest_cross%3E1949692283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1949692283&rft_id=info:pmid/28993124&rft_els_id=S0933365717300593&rfr_iscdi=true