Soft-sensor development for fed-batch bioreactors using support vector regression

In the present paper, a state-of-the-art machine learning based modeling formalism known as “support vector regression (SVR)”, has been introduced for the soft-sensor applications in the fed-batch processes. The SVR method possesses a number of attractive properties such as a strong statistical basi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical engineering journal 2006, Vol.27 (3), p.225-239
Hauptverfasser: Desai, Kiran, Badhe, Yogesh, Tambe, Sanjeev S., Kulkarni, Bhaskar D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 239
container_issue 3
container_start_page 225
container_title Biochemical engineering journal
container_volume 27
creator Desai, Kiran
Badhe, Yogesh
Tambe, Sanjeev S.
Kulkarni, Bhaskar D.
description In the present paper, a state-of-the-art machine learning based modeling formalism known as “support vector regression (SVR)”, has been introduced for the soft-sensor applications in the fed-batch processes. The SVR method possesses a number of attractive properties such as a strong statistical basis, convergence to the unique global minimum and an improved generalization performance by the approximated function. Also, the structure and parameters of an SVR model can be interpreted in terms of the training data. The efficacy of the SVR formalism for the soft-sensor development task has been demonstrated by considering two simulated bio-processes namely, invertase and streptokinase. Additionally, the performance of the SVR based soft-sensors is rigorously compared with those developed using the multilayer perceptron and radial basis function neural networks. The results presented here clearly indicate that the SVR is an attractive alternative to artificial neural networks for the development of soft-sensors in bioprocesses.
doi_str_mv 10.1016/j.bej.2005.08.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19492675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1369703X05002330</els_id><sourcerecordid>19492675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-a5b651c389e8108d8559f67e02404963864834eb45ed7ecc00bb551ec724202e3</originalsourceid><addsrcrecordid>eNp9kElLxEAQhYMouP4Ab7noLbE6nV6CJxE3EERU8NZ0OhXtIZOOXZkB_709jODNUy2894r6suyUQcmAyYtF2eKirABECboEqHayA6YVL6pGvO-mnsumUMDf97NDogUASK7UQfb8Evq5IBwpxLzDNQ5hWuI4532ae-yK1s7uM299iGjdHCLlK_LjR06raQpxzte42eYRPyIS-TAeZ3u9HQhPfutR9nZ783p9Xzw-3T1cXz0Wjgs9F1a0UjDHdYOage60EE0vFUJVQ91IrmWteY1tLbBT6BxA2wrB0KmqrqBCfpSdb3OnGL5WSLNZenI4DHbEsCLDmrqppBJJyLZCFwNRxN5M0S9t_DYMzAaeWZgEz2zgGdAmwUues99wS84OfbSj8_RnVIJJziDpLrc6TJ-uPUZDzuPosPMxgTFd8P9c-QEF2ITX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19492675</pqid></control><display><type>article</type><title>Soft-sensor development for fed-batch bioreactors using support vector regression</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Desai, Kiran ; Badhe, Yogesh ; Tambe, Sanjeev S. ; Kulkarni, Bhaskar D.</creator><creatorcontrib>Desai, Kiran ; Badhe, Yogesh ; Tambe, Sanjeev S. ; Kulkarni, Bhaskar D.</creatorcontrib><description>In the present paper, a state-of-the-art machine learning based modeling formalism known as “support vector regression (SVR)”, has been introduced for the soft-sensor applications in the fed-batch processes. The SVR method possesses a number of attractive properties such as a strong statistical basis, convergence to the unique global minimum and an improved generalization performance by the approximated function. Also, the structure and parameters of an SVR model can be interpreted in terms of the training data. The efficacy of the SVR formalism for the soft-sensor development task has been demonstrated by considering two simulated bio-processes namely, invertase and streptokinase. Additionally, the performance of the SVR based soft-sensors is rigorously compared with those developed using the multilayer perceptron and radial basis function neural networks. The results presented here clearly indicate that the SVR is an attractive alternative to artificial neural networks for the development of soft-sensors in bioprocesses.</description><identifier>ISSN: 1369-703X</identifier><identifier>EISSN: 1873-295X</identifier><identifier>DOI: 10.1016/j.bej.2005.08.002</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Artificial neural networks ; Biological and medical sciences ; Bioreactor ; Biotechnology ; Fundamental and applied biological sciences. Psychology ; Multilayer perceptron ; Radial basis function network ; Soft-sensors ; Support vector regression</subject><ispartof>Biochemical engineering journal, 2006, Vol.27 (3), p.225-239</ispartof><rights>2005 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-a5b651c389e8108d8559f67e02404963864834eb45ed7ecc00bb551ec724202e3</citedby><cites>FETCH-LOGICAL-c358t-a5b651c389e8108d8559f67e02404963864834eb45ed7ecc00bb551ec724202e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bej.2005.08.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,4023,27922,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17516310$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Desai, Kiran</creatorcontrib><creatorcontrib>Badhe, Yogesh</creatorcontrib><creatorcontrib>Tambe, Sanjeev S.</creatorcontrib><creatorcontrib>Kulkarni, Bhaskar D.</creatorcontrib><title>Soft-sensor development for fed-batch bioreactors using support vector regression</title><title>Biochemical engineering journal</title><description>In the present paper, a state-of-the-art machine learning based modeling formalism known as “support vector regression (SVR)”, has been introduced for the soft-sensor applications in the fed-batch processes. The SVR method possesses a number of attractive properties such as a strong statistical basis, convergence to the unique global minimum and an improved generalization performance by the approximated function. Also, the structure and parameters of an SVR model can be interpreted in terms of the training data. The efficacy of the SVR formalism for the soft-sensor development task has been demonstrated by considering two simulated bio-processes namely, invertase and streptokinase. Additionally, the performance of the SVR based soft-sensors is rigorously compared with those developed using the multilayer perceptron and radial basis function neural networks. The results presented here clearly indicate that the SVR is an attractive alternative to artificial neural networks for the development of soft-sensors in bioprocesses.</description><subject>Artificial neural networks</subject><subject>Biological and medical sciences</subject><subject>Bioreactor</subject><subject>Biotechnology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Multilayer perceptron</subject><subject>Radial basis function network</subject><subject>Soft-sensors</subject><subject>Support vector regression</subject><issn>1369-703X</issn><issn>1873-295X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kElLxEAQhYMouP4Ab7noLbE6nV6CJxE3EERU8NZ0OhXtIZOOXZkB_709jODNUy2894r6suyUQcmAyYtF2eKirABECboEqHayA6YVL6pGvO-mnsumUMDf97NDogUASK7UQfb8Evq5IBwpxLzDNQ5hWuI4532ae-yK1s7uM299iGjdHCLlK_LjR06raQpxzte42eYRPyIS-TAeZ3u9HQhPfutR9nZ783p9Xzw-3T1cXz0Wjgs9F1a0UjDHdYOage60EE0vFUJVQ91IrmWteY1tLbBT6BxA2wrB0KmqrqBCfpSdb3OnGL5WSLNZenI4DHbEsCLDmrqppBJJyLZCFwNRxN5M0S9t_DYMzAaeWZgEz2zgGdAmwUues99wS84OfbSj8_RnVIJJziDpLrc6TJ-uPUZDzuPosPMxgTFd8P9c-QEF2ITX</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Desai, Kiran</creator><creator>Badhe, Yogesh</creator><creator>Tambe, Sanjeev S.</creator><creator>Kulkarni, Bhaskar D.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>2006</creationdate><title>Soft-sensor development for fed-batch bioreactors using support vector regression</title><author>Desai, Kiran ; Badhe, Yogesh ; Tambe, Sanjeev S. ; Kulkarni, Bhaskar D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-a5b651c389e8108d8559f67e02404963864834eb45ed7ecc00bb551ec724202e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Artificial neural networks</topic><topic>Biological and medical sciences</topic><topic>Bioreactor</topic><topic>Biotechnology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Multilayer perceptron</topic><topic>Radial basis function network</topic><topic>Soft-sensors</topic><topic>Support vector regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Desai, Kiran</creatorcontrib><creatorcontrib>Badhe, Yogesh</creatorcontrib><creatorcontrib>Tambe, Sanjeev S.</creatorcontrib><creatorcontrib>Kulkarni, Bhaskar D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biochemical engineering journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desai, Kiran</au><au>Badhe, Yogesh</au><au>Tambe, Sanjeev S.</au><au>Kulkarni, Bhaskar D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soft-sensor development for fed-batch bioreactors using support vector regression</atitle><jtitle>Biochemical engineering journal</jtitle><date>2006</date><risdate>2006</risdate><volume>27</volume><issue>3</issue><spage>225</spage><epage>239</epage><pages>225-239</pages><issn>1369-703X</issn><eissn>1873-295X</eissn><abstract>In the present paper, a state-of-the-art machine learning based modeling formalism known as “support vector regression (SVR)”, has been introduced for the soft-sensor applications in the fed-batch processes. The SVR method possesses a number of attractive properties such as a strong statistical basis, convergence to the unique global minimum and an improved generalization performance by the approximated function. Also, the structure and parameters of an SVR model can be interpreted in terms of the training data. The efficacy of the SVR formalism for the soft-sensor development task has been demonstrated by considering two simulated bio-processes namely, invertase and streptokinase. Additionally, the performance of the SVR based soft-sensors is rigorously compared with those developed using the multilayer perceptron and radial basis function neural networks. The results presented here clearly indicate that the SVR is an attractive alternative to artificial neural networks for the development of soft-sensors in bioprocesses.</abstract><cop>Lausanne</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><doi>10.1016/j.bej.2005.08.002</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1369-703X
ispartof Biochemical engineering journal, 2006, Vol.27 (3), p.225-239
issn 1369-703X
1873-295X
language eng
recordid cdi_proquest_miscellaneous_19492675
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Artificial neural networks
Biological and medical sciences
Bioreactor
Biotechnology
Fundamental and applied biological sciences. Psychology
Multilayer perceptron
Radial basis function network
Soft-sensors
Support vector regression
title Soft-sensor development for fed-batch bioreactors using support vector regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A39%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soft-sensor%20development%20for%20fed-batch%20bioreactors%20using%20support%20vector%20regression&rft.jtitle=Biochemical%20engineering%20journal&rft.au=Desai,%20Kiran&rft.date=2006&rft.volume=27&rft.issue=3&rft.spage=225&rft.epage=239&rft.pages=225-239&rft.issn=1369-703X&rft.eissn=1873-295X&rft_id=info:doi/10.1016/j.bej.2005.08.002&rft_dat=%3Cproquest_cross%3E19492675%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19492675&rft_id=info:pmid/&rft_els_id=S1369703X05002330&rfr_iscdi=true