Unravelling the electronic structure and dynamics of an isolated molecular rotary motor in the gas-phase

Light-driven molecular motors derived from chiral overcrowded alkenes are an important class of compounds in which sequential photochemical and thermal rearrangements result in unidirectional rotation of one part of the molecule with respect to another. Here, we employ anion photoelectron spectrosco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2017-09, Vol.8 (9), p.6141-6148
Hauptverfasser: Beekmeyer, Reece, Parkes, Michael A, Ridgwell, Luke, Riley, Jamie W, Chen, Jiawen, Feringa, Ben L, Kerridge, Andrew, Fielding, Helen H
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6148
container_issue 9
container_start_page 6141
container_title Chemical science (Cambridge)
container_volume 8
creator Beekmeyer, Reece
Parkes, Michael A
Ridgwell, Luke
Riley, Jamie W
Chen, Jiawen
Feringa, Ben L
Kerridge, Andrew
Fielding, Helen H
description Light-driven molecular motors derived from chiral overcrowded alkenes are an important class of compounds in which sequential photochemical and thermal rearrangements result in unidirectional rotation of one part of the molecule with respect to another. Here, we employ anion photoelectron spectroscopy to probe the electronic structure and dynamics of a unidirectional molecular rotary motor anion in the gas-phase and quantum chemistry calculations to guide the interpretation of our results. We find that following photoexcitation of the first electronically excited state, the molecule rotates around its axle and some population remains on the excited potential energy surface and some population undergoes internal conversion back to the electronic ground state. These observations are similar to those observed in time-resolved measurements of rotary molecular motors in solution. This work demonstrates the potential of anion photoelectron spectroscopy for studying the electronic structure and dynamics of molecular motors in the gas-phase, provides important benchmarks for theory and improves our fundamental understanding of light-activated molecular rotary motors, which can be used to inform the design of new photoactivated nanoscale devices.
doi_str_mv 10.1039/c7sc01997a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1949085556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1949085556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-de58894019860776afebf6a987161d0c2e3ffed93bce52cc343ed312cdc901d53</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMottRu_AGSpQijeUxmJssy-IKCC-16SJM7bWRmUpOM0H9vrLV3cx9898A5CF1Tck8Jlw-6DJpQKUt1hqaM5DQrBJfnp5mRCZqH8ElScU4FKy_RhFWykkWeT9F2NXj1DV1nhw2OW8DQgY7eDVbjEP2o4-gBq8Fgsx9Ub3XArk07tsF1KoLBvUsfY6c89i4qv0-H6Dy2w0Fuo0K226oAV-iiVV2A-bHP0Orp8aN-yZZvz6_1YplpznjMDIiqknlyVBWkLAvVwrotlKxKWlBDNAPetmAkX2sQTGueczCcMm20JNQIPkO3f7o7775GCLHpbdDJoBrAjaGhMpekEkIUCb37Q7V3IXhom523fbLQUNL8htvU5Xt9CHeR4Juj7rjuwZzQ_yj5DycOdiY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1949085556</pqid></control><display><type>article</type><title>Unravelling the electronic structure and dynamics of an isolated molecular rotary motor in the gas-phase</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Beekmeyer, Reece ; Parkes, Michael A ; Ridgwell, Luke ; Riley, Jamie W ; Chen, Jiawen ; Feringa, Ben L ; Kerridge, Andrew ; Fielding, Helen H</creator><creatorcontrib>Beekmeyer, Reece ; Parkes, Michael A ; Ridgwell, Luke ; Riley, Jamie W ; Chen, Jiawen ; Feringa, Ben L ; Kerridge, Andrew ; Fielding, Helen H</creatorcontrib><description>Light-driven molecular motors derived from chiral overcrowded alkenes are an important class of compounds in which sequential photochemical and thermal rearrangements result in unidirectional rotation of one part of the molecule with respect to another. Here, we employ anion photoelectron spectroscopy to probe the electronic structure and dynamics of a unidirectional molecular rotary motor anion in the gas-phase and quantum chemistry calculations to guide the interpretation of our results. We find that following photoexcitation of the first electronically excited state, the molecule rotates around its axle and some population remains on the excited potential energy surface and some population undergoes internal conversion back to the electronic ground state. These observations are similar to those observed in time-resolved measurements of rotary molecular motors in solution. This work demonstrates the potential of anion photoelectron spectroscopy for studying the electronic structure and dynamics of molecular motors in the gas-phase, provides important benchmarks for theory and improves our fundamental understanding of light-activated molecular rotary motors, which can be used to inform the design of new photoactivated nanoscale devices.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/c7sc01997a</identifier><identifier>PMID: 28989644</identifier><language>eng</language><publisher>England</publisher><ispartof>Chemical science (Cambridge), 2017-09, Vol.8 (9), p.6141-6148</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-de58894019860776afebf6a987161d0c2e3ffed93bce52cc343ed312cdc901d53</citedby><cites>FETCH-LOGICAL-c323t-de58894019860776afebf6a987161d0c2e3ffed93bce52cc343ed312cdc901d53</cites><orcidid>0000-0003-1572-0070 ; 0000-0003-0588-8435 ; 0000-0002-2958-317X ; 0000-0002-2876-1202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28989644$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beekmeyer, Reece</creatorcontrib><creatorcontrib>Parkes, Michael A</creatorcontrib><creatorcontrib>Ridgwell, Luke</creatorcontrib><creatorcontrib>Riley, Jamie W</creatorcontrib><creatorcontrib>Chen, Jiawen</creatorcontrib><creatorcontrib>Feringa, Ben L</creatorcontrib><creatorcontrib>Kerridge, Andrew</creatorcontrib><creatorcontrib>Fielding, Helen H</creatorcontrib><title>Unravelling the electronic structure and dynamics of an isolated molecular rotary motor in the gas-phase</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Light-driven molecular motors derived from chiral overcrowded alkenes are an important class of compounds in which sequential photochemical and thermal rearrangements result in unidirectional rotation of one part of the molecule with respect to another. Here, we employ anion photoelectron spectroscopy to probe the electronic structure and dynamics of a unidirectional molecular rotary motor anion in the gas-phase and quantum chemistry calculations to guide the interpretation of our results. We find that following photoexcitation of the first electronically excited state, the molecule rotates around its axle and some population remains on the excited potential energy surface and some population undergoes internal conversion back to the electronic ground state. These observations are similar to those observed in time-resolved measurements of rotary molecular motors in solution. This work demonstrates the potential of anion photoelectron spectroscopy for studying the electronic structure and dynamics of molecular motors in the gas-phase, provides important benchmarks for theory and improves our fundamental understanding of light-activated molecular rotary motors, which can be used to inform the design of new photoactivated nanoscale devices.</description><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMottRu_AGSpQijeUxmJssy-IKCC-16SJM7bWRmUpOM0H9vrLV3cx9898A5CF1Tck8Jlw-6DJpQKUt1hqaM5DQrBJfnp5mRCZqH8ElScU4FKy_RhFWykkWeT9F2NXj1DV1nhw2OW8DQgY7eDVbjEP2o4-gBq8Fgsx9Ub3XArk07tsF1KoLBvUsfY6c89i4qv0-H6Dy2w0Fuo0K226oAV-iiVV2A-bHP0Orp8aN-yZZvz6_1YplpznjMDIiqknlyVBWkLAvVwrotlKxKWlBDNAPetmAkX2sQTGueczCcMm20JNQIPkO3f7o7775GCLHpbdDJoBrAjaGhMpekEkIUCb37Q7V3IXhom523fbLQUNL8htvU5Xt9CHeR4Juj7rjuwZzQ_yj5DycOdiY</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Beekmeyer, Reece</creator><creator>Parkes, Michael A</creator><creator>Ridgwell, Luke</creator><creator>Riley, Jamie W</creator><creator>Chen, Jiawen</creator><creator>Feringa, Ben L</creator><creator>Kerridge, Andrew</creator><creator>Fielding, Helen H</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1572-0070</orcidid><orcidid>https://orcid.org/0000-0003-0588-8435</orcidid><orcidid>https://orcid.org/0000-0002-2958-317X</orcidid><orcidid>https://orcid.org/0000-0002-2876-1202</orcidid></search><sort><creationdate>20170901</creationdate><title>Unravelling the electronic structure and dynamics of an isolated molecular rotary motor in the gas-phase</title><author>Beekmeyer, Reece ; Parkes, Michael A ; Ridgwell, Luke ; Riley, Jamie W ; Chen, Jiawen ; Feringa, Ben L ; Kerridge, Andrew ; Fielding, Helen H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-de58894019860776afebf6a987161d0c2e3ffed93bce52cc343ed312cdc901d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beekmeyer, Reece</creatorcontrib><creatorcontrib>Parkes, Michael A</creatorcontrib><creatorcontrib>Ridgwell, Luke</creatorcontrib><creatorcontrib>Riley, Jamie W</creatorcontrib><creatorcontrib>Chen, Jiawen</creatorcontrib><creatorcontrib>Feringa, Ben L</creatorcontrib><creatorcontrib>Kerridge, Andrew</creatorcontrib><creatorcontrib>Fielding, Helen H</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beekmeyer, Reece</au><au>Parkes, Michael A</au><au>Ridgwell, Luke</au><au>Riley, Jamie W</au><au>Chen, Jiawen</au><au>Feringa, Ben L</au><au>Kerridge, Andrew</au><au>Fielding, Helen H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unravelling the electronic structure and dynamics of an isolated molecular rotary motor in the gas-phase</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>8</volume><issue>9</issue><spage>6141</spage><epage>6148</epage><pages>6141-6148</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Light-driven molecular motors derived from chiral overcrowded alkenes are an important class of compounds in which sequential photochemical and thermal rearrangements result in unidirectional rotation of one part of the molecule with respect to another. Here, we employ anion photoelectron spectroscopy to probe the electronic structure and dynamics of a unidirectional molecular rotary motor anion in the gas-phase and quantum chemistry calculations to guide the interpretation of our results. We find that following photoexcitation of the first electronically excited state, the molecule rotates around its axle and some population remains on the excited potential energy surface and some population undergoes internal conversion back to the electronic ground state. These observations are similar to those observed in time-resolved measurements of rotary molecular motors in solution. This work demonstrates the potential of anion photoelectron spectroscopy for studying the electronic structure and dynamics of molecular motors in the gas-phase, provides important benchmarks for theory and improves our fundamental understanding of light-activated molecular rotary motors, which can be used to inform the design of new photoactivated nanoscale devices.</abstract><cop>England</cop><pmid>28989644</pmid><doi>10.1039/c7sc01997a</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1572-0070</orcidid><orcidid>https://orcid.org/0000-0003-0588-8435</orcidid><orcidid>https://orcid.org/0000-0002-2958-317X</orcidid><orcidid>https://orcid.org/0000-0002-2876-1202</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2017-09, Vol.8 (9), p.6141-6148
issn 2041-6520
2041-6539
language eng
recordid cdi_proquest_miscellaneous_1949085556
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central
title Unravelling the electronic structure and dynamics of an isolated molecular rotary motor in the gas-phase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A46%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unravelling%20the%20electronic%20structure%20and%20dynamics%20of%20an%20isolated%20molecular%20rotary%20motor%20in%20the%20gas-phase&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Beekmeyer,%20Reece&rft.date=2017-09-01&rft.volume=8&rft.issue=9&rft.spage=6141&rft.epage=6148&rft.pages=6141-6148&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/c7sc01997a&rft_dat=%3Cproquest_cross%3E1949085556%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1949085556&rft_id=info:pmid/28989644&rfr_iscdi=true