Linear dynamics of non‐symmetric perturbations in geostrophic horizontal shear flows

The linear dynamics of non‐symmetric wave and vortex mode perturbations in spectrally stable geostrophic zonal flows with a constant horizontal shear along the meridional direction, when a fluid is incompressible and stratified, is investigated. Specific features of these dynamics are closely relate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quarterly journal of the Royal Meteorological Society 2006-01, Vol.132 (615), p.505-518
Hauptverfasser: Kalashnik, M. V., Mamatsashvili, G. R., Chagelishvili, G.D., Lominadze, J. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 518
container_issue 615
container_start_page 505
container_title Quarterly journal of the Royal Meteorological Society
container_volume 132
creator Kalashnik, M. V.
Mamatsashvili, G. R.
Chagelishvili, G.D.
Lominadze, J. G.
description The linear dynamics of non‐symmetric wave and vortex mode perturbations in spectrally stable geostrophic zonal flows with a constant horizontal shear along the meridional direction, when a fluid is incompressible and stratified, is investigated. Specific features of these dynamics are closely related to the non‐normality of the linear operators governing perturbation evolution in shear flows and are well interpreted in the framework of the non‐modal approach—by tracing the linear dynamics of spatial Fourier harmonics of perturbations in time. If the Rossby number Ro1, in addition, there takes place an exponential/explosive transient growth of the waves that precedes the time interval of algebraic amplification. We also describe the evolution of pure vortex mode perturbations imposed initially on the mean flow. It is shown that at Ro∼1, pure vortex (aperiodic) perturbations are able to gain basic flow energy and then generate non‐symmetric shear internal waves. The studied linear phenomena are specific to geostrophic zonal flows and cast doubt on the filtering of fast wave perturbations in the traditional quasi‐geostrophic models of geophysical hydrodynamics. Copyright © 2006 Royal Meteorological Society
doi_str_mv 10.1256/qj.04.105
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19489029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19489029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3063-ed714c5a58aad5d08bf1fb564c6fc6a07b608e3d39ea6932b723f482e0e35f643</originalsourceid><addsrcrecordid>eNp10M1Kw0AUBeBBFKzVhW-QleAi9c5vkqUUfymIoOJumCQzdkoyk86klLjyEXxGn8SUunV1OZyPs7gInWOYYcLF1Xo1AzbDwA_QBLMsS_MM3g_RBIDytAAojtFJjCsA4BnJJuhtYZ1WIakHp1pbxcSbxHn38_Udh7bVfbBV0unQb0KpeutdTKxLPrSPffDdciyXPthP73rVJHG5WzKN38ZTdGRUE_XZ352i19ubl_l9uni6e5hfL9KKgqCprjPMKq54rlTNa8hLg03JBauEqYSCrBSQa1rTQitRUFJmhBqWEw2aciMYnaKL_W4X_HqjYy9bGyvdNMppv4kSFywvgBQjvNzDKvgYgzayC7ZVYZAY5O5zcr2SwMbER8v3dmsbPfwP5fMjARCYEoE5pvQXRDJzww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19489029</pqid></control><display><type>article</type><title>Linear dynamics of non‐symmetric perturbations in geostrophic horizontal shear flows</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><creator>Kalashnik, M. V. ; Mamatsashvili, G. R. ; Chagelishvili, G.D. ; Lominadze, J. G.</creator><creatorcontrib>Kalashnik, M. V. ; Mamatsashvili, G. R. ; Chagelishvili, G.D. ; Lominadze, J. G.</creatorcontrib><description>The linear dynamics of non‐symmetric wave and vortex mode perturbations in spectrally stable geostrophic zonal flows with a constant horizontal shear along the meridional direction, when a fluid is incompressible and stratified, is investigated. Specific features of these dynamics are closely related to the non‐normality of the linear operators governing perturbation evolution in shear flows and are well interpreted in the framework of the non‐modal approach—by tracing the linear dynamics of spatial Fourier harmonics of perturbations in time. If the Rossby number Ro&lt;1, there occurs an algebraic (asymptotically linear) amplification of non‐symmetric shear internal waves. It is shown that at Ro&gt;1, in addition, there takes place an exponential/explosive transient growth of the waves that precedes the time interval of algebraic amplification. We also describe the evolution of pure vortex mode perturbations imposed initially on the mean flow. It is shown that at Ro∼1, pure vortex (aperiodic) perturbations are able to gain basic flow energy and then generate non‐symmetric shear internal waves. The studied linear phenomena are specific to geostrophic zonal flows and cast doubt on the filtering of fast wave perturbations in the traditional quasi‐geostrophic models of geophysical hydrodynamics. Copyright © 2006 Royal Meteorological Society</description><identifier>ISSN: 0035-9009</identifier><identifier>EISSN: 1477-870X</identifier><identifier>DOI: 10.1256/qj.04.105</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Algebraic instability ; Geophysical flow ; Geostrophic adjustment ; Non‐modal approach ; Potential vorticity</subject><ispartof>Quarterly journal of the Royal Meteorological Society, 2006-01, Vol.132 (615), p.505-518</ispartof><rights>Copyright © 2006 Royal Meteorological Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3063-ed714c5a58aad5d08bf1fb564c6fc6a07b608e3d39ea6932b723f482e0e35f643</citedby><cites>FETCH-LOGICAL-c3063-ed714c5a58aad5d08bf1fb564c6fc6a07b608e3d39ea6932b723f482e0e35f643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1256%2Fqj.04.105$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1256%2Fqj.04.105$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kalashnik, M. V.</creatorcontrib><creatorcontrib>Mamatsashvili, G. R.</creatorcontrib><creatorcontrib>Chagelishvili, G.D.</creatorcontrib><creatorcontrib>Lominadze, J. G.</creatorcontrib><title>Linear dynamics of non‐symmetric perturbations in geostrophic horizontal shear flows</title><title>Quarterly journal of the Royal Meteorological Society</title><description>The linear dynamics of non‐symmetric wave and vortex mode perturbations in spectrally stable geostrophic zonal flows with a constant horizontal shear along the meridional direction, when a fluid is incompressible and stratified, is investigated. Specific features of these dynamics are closely related to the non‐normality of the linear operators governing perturbation evolution in shear flows and are well interpreted in the framework of the non‐modal approach—by tracing the linear dynamics of spatial Fourier harmonics of perturbations in time. If the Rossby number Ro&lt;1, there occurs an algebraic (asymptotically linear) amplification of non‐symmetric shear internal waves. It is shown that at Ro&gt;1, in addition, there takes place an exponential/explosive transient growth of the waves that precedes the time interval of algebraic amplification. We also describe the evolution of pure vortex mode perturbations imposed initially on the mean flow. It is shown that at Ro∼1, pure vortex (aperiodic) perturbations are able to gain basic flow energy and then generate non‐symmetric shear internal waves. The studied linear phenomena are specific to geostrophic zonal flows and cast doubt on the filtering of fast wave perturbations in the traditional quasi‐geostrophic models of geophysical hydrodynamics. Copyright © 2006 Royal Meteorological Society</description><subject>Algebraic instability</subject><subject>Geophysical flow</subject><subject>Geostrophic adjustment</subject><subject>Non‐modal approach</subject><subject>Potential vorticity</subject><issn>0035-9009</issn><issn>1477-870X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp10M1Kw0AUBeBBFKzVhW-QleAi9c5vkqUUfymIoOJumCQzdkoyk86klLjyEXxGn8SUunV1OZyPs7gInWOYYcLF1Xo1AzbDwA_QBLMsS_MM3g_RBIDytAAojtFJjCsA4BnJJuhtYZ1WIakHp1pbxcSbxHn38_Udh7bVfbBV0unQb0KpeutdTKxLPrSPffDdciyXPthP73rVJHG5WzKN38ZTdGRUE_XZ352i19ubl_l9uni6e5hfL9KKgqCprjPMKq54rlTNa8hLg03JBauEqYSCrBSQa1rTQitRUFJmhBqWEw2aciMYnaKL_W4X_HqjYy9bGyvdNMppv4kSFywvgBQjvNzDKvgYgzayC7ZVYZAY5O5zcr2SwMbER8v3dmsbPfwP5fMjARCYEoE5pvQXRDJzww</recordid><startdate>200601</startdate><enddate>200601</enddate><creator>Kalashnik, M. V.</creator><creator>Mamatsashvili, G. R.</creator><creator>Chagelishvili, G.D.</creator><creator>Lominadze, J. G.</creator><general>John Wiley &amp; Sons, Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>200601</creationdate><title>Linear dynamics of non‐symmetric perturbations in geostrophic horizontal shear flows</title><author>Kalashnik, M. V. ; Mamatsashvili, G. R. ; Chagelishvili, G.D. ; Lominadze, J. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3063-ed714c5a58aad5d08bf1fb564c6fc6a07b608e3d39ea6932b723f482e0e35f643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algebraic instability</topic><topic>Geophysical flow</topic><topic>Geostrophic adjustment</topic><topic>Non‐modal approach</topic><topic>Potential vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalashnik, M. V.</creatorcontrib><creatorcontrib>Mamatsashvili, G. R.</creatorcontrib><creatorcontrib>Chagelishvili, G.D.</creatorcontrib><creatorcontrib>Lominadze, J. G.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Quarterly journal of the Royal Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalashnik, M. V.</au><au>Mamatsashvili, G. R.</au><au>Chagelishvili, G.D.</au><au>Lominadze, J. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear dynamics of non‐symmetric perturbations in geostrophic horizontal shear flows</atitle><jtitle>Quarterly journal of the Royal Meteorological Society</jtitle><date>2006-01</date><risdate>2006</risdate><volume>132</volume><issue>615</issue><spage>505</spage><epage>518</epage><pages>505-518</pages><issn>0035-9009</issn><eissn>1477-870X</eissn><abstract>The linear dynamics of non‐symmetric wave and vortex mode perturbations in spectrally stable geostrophic zonal flows with a constant horizontal shear along the meridional direction, when a fluid is incompressible and stratified, is investigated. Specific features of these dynamics are closely related to the non‐normality of the linear operators governing perturbation evolution in shear flows and are well interpreted in the framework of the non‐modal approach—by tracing the linear dynamics of spatial Fourier harmonics of perturbations in time. If the Rossby number Ro&lt;1, there occurs an algebraic (asymptotically linear) amplification of non‐symmetric shear internal waves. It is shown that at Ro&gt;1, in addition, there takes place an exponential/explosive transient growth of the waves that precedes the time interval of algebraic amplification. We also describe the evolution of pure vortex mode perturbations imposed initially on the mean flow. It is shown that at Ro∼1, pure vortex (aperiodic) perturbations are able to gain basic flow energy and then generate non‐symmetric shear internal waves. The studied linear phenomena are specific to geostrophic zonal flows and cast doubt on the filtering of fast wave perturbations in the traditional quasi‐geostrophic models of geophysical hydrodynamics. Copyright © 2006 Royal Meteorological Society</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1256/qj.04.105</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0035-9009
ispartof Quarterly journal of the Royal Meteorological Society, 2006-01, Vol.132 (615), p.505-518
issn 0035-9009
1477-870X
language eng
recordid cdi_proquest_miscellaneous_19489029
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library
subjects Algebraic instability
Geophysical flow
Geostrophic adjustment
Non‐modal approach
Potential vorticity
title Linear dynamics of non‐symmetric perturbations in geostrophic horizontal shear flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T17%3A57%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20dynamics%20of%20non%E2%80%90symmetric%20perturbations%20in%20geostrophic%20horizontal%20shear%20flows&rft.jtitle=Quarterly%20journal%20of%20the%20Royal%20Meteorological%20Society&rft.au=Kalashnik,%20M.%20V.&rft.date=2006-01&rft.volume=132&rft.issue=615&rft.spage=505&rft.epage=518&rft.pages=505-518&rft.issn=0035-9009&rft.eissn=1477-870X&rft_id=info:doi/10.1256/qj.04.105&rft_dat=%3Cproquest_cross%3E19489029%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19489029&rft_id=info:pmid/&rfr_iscdi=true