Effect of internal gravitational coupling on Titan's non-synchronous rotation

Variations in the spin period of Titan have been detected by the Cassini radar observations. Angular momentum exchange between Titan's surface and the atmosphere over seasonal time scales corresponding to Saturn's orbital period of 29.5 year is the most likely cause of the observed non‐syn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2008-08, Vol.35 (16), p.n/a
Hauptverfasser: Karatekin, Ö., Van Hoolst, T., Tokano, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Variations in the spin period of Titan have been detected by the Cassini radar observations. Angular momentum exchange between Titan's surface and the atmosphere over seasonal time scales corresponding to Saturn's orbital period of 29.5 year is the most likely cause of the observed non‐synchronous rotation. The measured rotation rate can be explained if Titan's icy crust is rotationally decoupled from the interior in the presence of a subsurface ocean. However, we show that Titan is likely to rotate almost as a rigid body even when it has an internal ocean because of a substantial internal gravitational coupling between the crust and the interior. The predicted surface rotation rate will be further reduced due to Saturn's torque, but can approach to the observed value if other factors, such as larger atmospheric torque, smaller equatorial flattening or viscous relaxation of the icy crust are considered.
ISSN:0094-8276
1944-8007
DOI:10.1029/2008GL034744