Temporal case-based reasoning for type 1 diabetes mellitus bolus insulin decision support
Individuals with type 1 diabetes have to monitor their blood glucose levels, determine the quantity of insulin required to achieve optimal glycaemic control and administer it themselves subcutaneously, multiple times per day. To help with this process bolus calculators have been developed that sugge...
Gespeichert in:
Veröffentlicht in: | Artificial intelligence in medicine 2018-04, Vol.85, p.28-42 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 42 |
---|---|
container_issue | |
container_start_page | 28 |
container_title | Artificial intelligence in medicine |
container_volume | 85 |
creator | Brown, Daniel Aldea, Arantza Harrison, Rachel Martin, Clare Bayley, Ian |
description | Individuals with type 1 diabetes have to monitor their blood glucose levels, determine the quantity of insulin required to achieve optimal glycaemic control and administer it themselves subcutaneously, multiple times per day. To help with this process bolus calculators have been developed that suggest the appropriate dose. However these calculators do not automatically adapt to the specific circumstances of an individual and require fine-tuning of parameters, a process that often requires the input of an expert.
To overcome the limitations of the traditional methods this paper proposes the use of an artificial intelligence technique, case-based reasoning, to personalise the bolus calculation. A novel aspect of our approach is the use of temporal sequences to take into account preceding events when recommending the bolus insulin doses rather than looking at events in isolation.
The in silico results described in this paper show that given the initial conditions of the patient, the temporal retrieval algorithm identifies the most suitable case for reuse. Additionally through insulin-on-board adaptation and postprandial revision, the approach is able to learn and improve bolus predictions, reducing the blood glucose risk index by up to 27% after three revisions of a bolus solution. |
doi_str_mv | 10.1016/j.artmed.2017.09.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1948757722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0933365717300428</els_id><sourcerecordid>1948757722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-665bb5761a2c57ff29ab378a807fbd3704f0427896d0bde62f1ec53cd57e2a3</originalsourceid><addsrcrecordid>eNp9kMtO3TAQQK0KBBfKH1SVl2ySjp3EdjZIFeJRCamLsmFl-TGpfJXEwU4q8ff11YUtm5nFnHkdQr4xqBkw8WNfm7RO6GsOTNbQ1wDyC9kxJZuKKwEnZAd901SN6OQ5uch5D4VomTgj51z1SjBQO_LyjNMSkxmpMxkrW4KnCU2Oc5j_0iEmur4tSBn1wVhcMdMJxzGsW6Y2jiWGOW9jmKlHF3KIM83bUiauX8npYMaMV-_5kvy5v3u-fayefj_8uv35VLkW1FoJ0VnbScEMd50cBt4b20hlFMjB-kZCO0DLpeqFB-tR8IGh6xrnO4ncNJfk-jh1SfF1w7zqKWRXLjQzxi1r1rdKdlJyXtD2iLoUc0446CWFyaQ3zUAflOq9PirVB6Uael2Elbbv7xs2e6h9NH04LMDNEcDy5b-ASWcXcHboQ0K3ah_D5xv-A36hiro</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1948757722</pqid></control><display><type>article</type><title>Temporal case-based reasoning for type 1 diabetes mellitus bolus insulin decision support</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Brown, Daniel ; Aldea, Arantza ; Harrison, Rachel ; Martin, Clare ; Bayley, Ian</creator><creatorcontrib>Brown, Daniel ; Aldea, Arantza ; Harrison, Rachel ; Martin, Clare ; Bayley, Ian</creatorcontrib><description>Individuals with type 1 diabetes have to monitor their blood glucose levels, determine the quantity of insulin required to achieve optimal glycaemic control and administer it themselves subcutaneously, multiple times per day. To help with this process bolus calculators have been developed that suggest the appropriate dose. However these calculators do not automatically adapt to the specific circumstances of an individual and require fine-tuning of parameters, a process that often requires the input of an expert.
To overcome the limitations of the traditional methods this paper proposes the use of an artificial intelligence technique, case-based reasoning, to personalise the bolus calculation. A novel aspect of our approach is the use of temporal sequences to take into account preceding events when recommending the bolus insulin doses rather than looking at events in isolation.
The in silico results described in this paper show that given the initial conditions of the patient, the temporal retrieval algorithm identifies the most suitable case for reuse. Additionally through insulin-on-board adaptation and postprandial revision, the approach is able to learn and improve bolus predictions, reducing the blood glucose risk index by up to 27% after three revisions of a bolus solution.</description><identifier>ISSN: 0933-3657</identifier><identifier>EISSN: 1873-2860</identifier><identifier>DOI: 10.1016/j.artmed.2017.09.007</identifier><identifier>PMID: 28986108</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Artificial Intelligence ; Biomarkers - blood ; Blood Glucose - drug effects ; Blood Glucose - metabolism ; Case-based reasoning ; Chi-Square Distribution ; Computer Simulation ; Decision Support Techniques ; Diabetes ; Diabetes Mellitus, Type 1 - blood ; Diabetes Mellitus, Type 1 - diagnosis ; Diabetes Mellitus, Type 1 - drug therapy ; Diabetes Mellitus, Type 1 - psychology ; Drug Dosage Calculations ; Feature selection ; Humans ; Hypoglycemic Agents - administration & dosage ; Hypoglycemic Agents - adverse effects ; Injections, Subcutaneous ; Insulin - administration & dosage ; Insulin - adverse effects ; Knowledge based systems ; Self Administration ; Similarity measures ; Temporal ; Time Factors ; Treatment Outcome</subject><ispartof>Artificial intelligence in medicine, 2018-04, Vol.85, p.28-42</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright © 2017 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-665bb5761a2c57ff29ab378a807fbd3704f0427896d0bde62f1ec53cd57e2a3</citedby><cites>FETCH-LOGICAL-c408t-665bb5761a2c57ff29ab378a807fbd3704f0427896d0bde62f1ec53cd57e2a3</cites><orcidid>0000-0002-1295-9708 ; 0000-0002-0636-7546</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0933365717300428$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28986108$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brown, Daniel</creatorcontrib><creatorcontrib>Aldea, Arantza</creatorcontrib><creatorcontrib>Harrison, Rachel</creatorcontrib><creatorcontrib>Martin, Clare</creatorcontrib><creatorcontrib>Bayley, Ian</creatorcontrib><title>Temporal case-based reasoning for type 1 diabetes mellitus bolus insulin decision support</title><title>Artificial intelligence in medicine</title><addtitle>Artif Intell Med</addtitle><description>Individuals with type 1 diabetes have to monitor their blood glucose levels, determine the quantity of insulin required to achieve optimal glycaemic control and administer it themselves subcutaneously, multiple times per day. To help with this process bolus calculators have been developed that suggest the appropriate dose. However these calculators do not automatically adapt to the specific circumstances of an individual and require fine-tuning of parameters, a process that often requires the input of an expert.
To overcome the limitations of the traditional methods this paper proposes the use of an artificial intelligence technique, case-based reasoning, to personalise the bolus calculation. A novel aspect of our approach is the use of temporal sequences to take into account preceding events when recommending the bolus insulin doses rather than looking at events in isolation.
The in silico results described in this paper show that given the initial conditions of the patient, the temporal retrieval algorithm identifies the most suitable case for reuse. Additionally through insulin-on-board adaptation and postprandial revision, the approach is able to learn and improve bolus predictions, reducing the blood glucose risk index by up to 27% after three revisions of a bolus solution.</description><subject>Artificial Intelligence</subject><subject>Biomarkers - blood</subject><subject>Blood Glucose - drug effects</subject><subject>Blood Glucose - metabolism</subject><subject>Case-based reasoning</subject><subject>Chi-Square Distribution</subject><subject>Computer Simulation</subject><subject>Decision Support Techniques</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Type 1 - blood</subject><subject>Diabetes Mellitus, Type 1 - diagnosis</subject><subject>Diabetes Mellitus, Type 1 - drug therapy</subject><subject>Diabetes Mellitus, Type 1 - psychology</subject><subject>Drug Dosage Calculations</subject><subject>Feature selection</subject><subject>Humans</subject><subject>Hypoglycemic Agents - administration & dosage</subject><subject>Hypoglycemic Agents - adverse effects</subject><subject>Injections, Subcutaneous</subject><subject>Insulin - administration & dosage</subject><subject>Insulin - adverse effects</subject><subject>Knowledge based systems</subject><subject>Self Administration</subject><subject>Similarity measures</subject><subject>Temporal</subject><subject>Time Factors</subject><subject>Treatment Outcome</subject><issn>0933-3657</issn><issn>1873-2860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtO3TAQQK0KBBfKH1SVl2ySjp3EdjZIFeJRCamLsmFl-TGpfJXEwU4q8ff11YUtm5nFnHkdQr4xqBkw8WNfm7RO6GsOTNbQ1wDyC9kxJZuKKwEnZAd901SN6OQ5uch5D4VomTgj51z1SjBQO_LyjNMSkxmpMxkrW4KnCU2Oc5j_0iEmur4tSBn1wVhcMdMJxzGsW6Y2jiWGOW9jmKlHF3KIM83bUiauX8npYMaMV-_5kvy5v3u-fayefj_8uv35VLkW1FoJ0VnbScEMd50cBt4b20hlFMjB-kZCO0DLpeqFB-tR8IGh6xrnO4ncNJfk-jh1SfF1w7zqKWRXLjQzxi1r1rdKdlJyXtD2iLoUc0446CWFyaQ3zUAflOq9PirVB6Uael2Elbbv7xs2e6h9NH04LMDNEcDy5b-ASWcXcHboQ0K3ah_D5xv-A36hiro</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Brown, Daniel</creator><creator>Aldea, Arantza</creator><creator>Harrison, Rachel</creator><creator>Martin, Clare</creator><creator>Bayley, Ian</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1295-9708</orcidid><orcidid>https://orcid.org/0000-0002-0636-7546</orcidid></search><sort><creationdate>201804</creationdate><title>Temporal case-based reasoning for type 1 diabetes mellitus bolus insulin decision support</title><author>Brown, Daniel ; Aldea, Arantza ; Harrison, Rachel ; Martin, Clare ; Bayley, Ian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-665bb5761a2c57ff29ab378a807fbd3704f0427896d0bde62f1ec53cd57e2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial Intelligence</topic><topic>Biomarkers - blood</topic><topic>Blood Glucose - drug effects</topic><topic>Blood Glucose - metabolism</topic><topic>Case-based reasoning</topic><topic>Chi-Square Distribution</topic><topic>Computer Simulation</topic><topic>Decision Support Techniques</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Type 1 - blood</topic><topic>Diabetes Mellitus, Type 1 - diagnosis</topic><topic>Diabetes Mellitus, Type 1 - drug therapy</topic><topic>Diabetes Mellitus, Type 1 - psychology</topic><topic>Drug Dosage Calculations</topic><topic>Feature selection</topic><topic>Humans</topic><topic>Hypoglycemic Agents - administration & dosage</topic><topic>Hypoglycemic Agents - adverse effects</topic><topic>Injections, Subcutaneous</topic><topic>Insulin - administration & dosage</topic><topic>Insulin - adverse effects</topic><topic>Knowledge based systems</topic><topic>Self Administration</topic><topic>Similarity measures</topic><topic>Temporal</topic><topic>Time Factors</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, Daniel</creatorcontrib><creatorcontrib>Aldea, Arantza</creatorcontrib><creatorcontrib>Harrison, Rachel</creatorcontrib><creatorcontrib>Martin, Clare</creatorcontrib><creatorcontrib>Bayley, Ian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Artificial intelligence in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, Daniel</au><au>Aldea, Arantza</au><au>Harrison, Rachel</au><au>Martin, Clare</au><au>Bayley, Ian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal case-based reasoning for type 1 diabetes mellitus bolus insulin decision support</atitle><jtitle>Artificial intelligence in medicine</jtitle><addtitle>Artif Intell Med</addtitle><date>2018-04</date><risdate>2018</risdate><volume>85</volume><spage>28</spage><epage>42</epage><pages>28-42</pages><issn>0933-3657</issn><eissn>1873-2860</eissn><abstract>Individuals with type 1 diabetes have to monitor their blood glucose levels, determine the quantity of insulin required to achieve optimal glycaemic control and administer it themselves subcutaneously, multiple times per day. To help with this process bolus calculators have been developed that suggest the appropriate dose. However these calculators do not automatically adapt to the specific circumstances of an individual and require fine-tuning of parameters, a process that often requires the input of an expert.
To overcome the limitations of the traditional methods this paper proposes the use of an artificial intelligence technique, case-based reasoning, to personalise the bolus calculation. A novel aspect of our approach is the use of temporal sequences to take into account preceding events when recommending the bolus insulin doses rather than looking at events in isolation.
The in silico results described in this paper show that given the initial conditions of the patient, the temporal retrieval algorithm identifies the most suitable case for reuse. Additionally through insulin-on-board adaptation and postprandial revision, the approach is able to learn and improve bolus predictions, reducing the blood glucose risk index by up to 27% after three revisions of a bolus solution.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>28986108</pmid><doi>10.1016/j.artmed.2017.09.007</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1295-9708</orcidid><orcidid>https://orcid.org/0000-0002-0636-7546</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0933-3657 |
ispartof | Artificial intelligence in medicine, 2018-04, Vol.85, p.28-42 |
issn | 0933-3657 1873-2860 |
language | eng |
recordid | cdi_proquest_miscellaneous_1948757722 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Artificial Intelligence Biomarkers - blood Blood Glucose - drug effects Blood Glucose - metabolism Case-based reasoning Chi-Square Distribution Computer Simulation Decision Support Techniques Diabetes Diabetes Mellitus, Type 1 - blood Diabetes Mellitus, Type 1 - diagnosis Diabetes Mellitus, Type 1 - drug therapy Diabetes Mellitus, Type 1 - psychology Drug Dosage Calculations Feature selection Humans Hypoglycemic Agents - administration & dosage Hypoglycemic Agents - adverse effects Injections, Subcutaneous Insulin - administration & dosage Insulin - adverse effects Knowledge based systems Self Administration Similarity measures Temporal Time Factors Treatment Outcome |
title | Temporal case-based reasoning for type 1 diabetes mellitus bolus insulin decision support |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A45%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal%20case-based%20reasoning%20for%20type%201%20diabetes%20mellitus%20bolus%20insulin%20decision%20support&rft.jtitle=Artificial%20intelligence%20in%20medicine&rft.au=Brown,%20Daniel&rft.date=2018-04&rft.volume=85&rft.spage=28&rft.epage=42&rft.pages=28-42&rft.issn=0933-3657&rft.eissn=1873-2860&rft_id=info:doi/10.1016/j.artmed.2017.09.007&rft_dat=%3Cproquest_cross%3E1948757722%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1948757722&rft_id=info:pmid/28986108&rft_els_id=S0933365717300428&rfr_iscdi=true |