Temporal case-based reasoning for type 1 diabetes mellitus bolus insulin decision support

Individuals with type 1 diabetes have to monitor their blood glucose levels, determine the quantity of insulin required to achieve optimal glycaemic control and administer it themselves subcutaneously, multiple times per day. To help with this process bolus calculators have been developed that sugge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence in medicine 2018-04, Vol.85, p.28-42
Hauptverfasser: Brown, Daniel, Aldea, Arantza, Harrison, Rachel, Martin, Clare, Bayley, Ian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42
container_issue
container_start_page 28
container_title Artificial intelligence in medicine
container_volume 85
creator Brown, Daniel
Aldea, Arantza
Harrison, Rachel
Martin, Clare
Bayley, Ian
description Individuals with type 1 diabetes have to monitor their blood glucose levels, determine the quantity of insulin required to achieve optimal glycaemic control and administer it themselves subcutaneously, multiple times per day. To help with this process bolus calculators have been developed that suggest the appropriate dose. However these calculators do not automatically adapt to the specific circumstances of an individual and require fine-tuning of parameters, a process that often requires the input of an expert. To overcome the limitations of the traditional methods this paper proposes the use of an artificial intelligence technique, case-based reasoning, to personalise the bolus calculation. A novel aspect of our approach is the use of temporal sequences to take into account preceding events when recommending the bolus insulin doses rather than looking at events in isolation. The in silico results described in this paper show that given the initial conditions of the patient, the temporal retrieval algorithm identifies the most suitable case for reuse. Additionally through insulin-on-board adaptation and postprandial revision, the approach is able to learn and improve bolus predictions, reducing the blood glucose risk index by up to 27% after three revisions of a bolus solution.
doi_str_mv 10.1016/j.artmed.2017.09.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1948757722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0933365717300428</els_id><sourcerecordid>1948757722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-665bb5761a2c57ff29ab378a807fbd3704f0427896d0bde62f1ec53cd57e2a3</originalsourceid><addsrcrecordid>eNp9kMtO3TAQQK0KBBfKH1SVl2ySjp3EdjZIFeJRCamLsmFl-TGpfJXEwU4q8ff11YUtm5nFnHkdQr4xqBkw8WNfm7RO6GsOTNbQ1wDyC9kxJZuKKwEnZAd901SN6OQ5uch5D4VomTgj51z1SjBQO_LyjNMSkxmpMxkrW4KnCU2Oc5j_0iEmur4tSBn1wVhcMdMJxzGsW6Y2jiWGOW9jmKlHF3KIM83bUiauX8npYMaMV-_5kvy5v3u-fayefj_8uv35VLkW1FoJ0VnbScEMd50cBt4b20hlFMjB-kZCO0DLpeqFB-tR8IGh6xrnO4ncNJfk-jh1SfF1w7zqKWRXLjQzxi1r1rdKdlJyXtD2iLoUc0446CWFyaQ3zUAflOq9PirVB6Uael2Elbbv7xs2e6h9NH04LMDNEcDy5b-ASWcXcHboQ0K3ah_D5xv-A36hiro</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1948757722</pqid></control><display><type>article</type><title>Temporal case-based reasoning for type 1 diabetes mellitus bolus insulin decision support</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Brown, Daniel ; Aldea, Arantza ; Harrison, Rachel ; Martin, Clare ; Bayley, Ian</creator><creatorcontrib>Brown, Daniel ; Aldea, Arantza ; Harrison, Rachel ; Martin, Clare ; Bayley, Ian</creatorcontrib><description>Individuals with type 1 diabetes have to monitor their blood glucose levels, determine the quantity of insulin required to achieve optimal glycaemic control and administer it themselves subcutaneously, multiple times per day. To help with this process bolus calculators have been developed that suggest the appropriate dose. However these calculators do not automatically adapt to the specific circumstances of an individual and require fine-tuning of parameters, a process that often requires the input of an expert. To overcome the limitations of the traditional methods this paper proposes the use of an artificial intelligence technique, case-based reasoning, to personalise the bolus calculation. A novel aspect of our approach is the use of temporal sequences to take into account preceding events when recommending the bolus insulin doses rather than looking at events in isolation. The in silico results described in this paper show that given the initial conditions of the patient, the temporal retrieval algorithm identifies the most suitable case for reuse. Additionally through insulin-on-board adaptation and postprandial revision, the approach is able to learn and improve bolus predictions, reducing the blood glucose risk index by up to 27% after three revisions of a bolus solution.</description><identifier>ISSN: 0933-3657</identifier><identifier>EISSN: 1873-2860</identifier><identifier>DOI: 10.1016/j.artmed.2017.09.007</identifier><identifier>PMID: 28986108</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Artificial Intelligence ; Biomarkers - blood ; Blood Glucose - drug effects ; Blood Glucose - metabolism ; Case-based reasoning ; Chi-Square Distribution ; Computer Simulation ; Decision Support Techniques ; Diabetes ; Diabetes Mellitus, Type 1 - blood ; Diabetes Mellitus, Type 1 - diagnosis ; Diabetes Mellitus, Type 1 - drug therapy ; Diabetes Mellitus, Type 1 - psychology ; Drug Dosage Calculations ; Feature selection ; Humans ; Hypoglycemic Agents - administration &amp; dosage ; Hypoglycemic Agents - adverse effects ; Injections, Subcutaneous ; Insulin - administration &amp; dosage ; Insulin - adverse effects ; Knowledge based systems ; Self Administration ; Similarity measures ; Temporal ; Time Factors ; Treatment Outcome</subject><ispartof>Artificial intelligence in medicine, 2018-04, Vol.85, p.28-42</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright © 2017 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-665bb5761a2c57ff29ab378a807fbd3704f0427896d0bde62f1ec53cd57e2a3</citedby><cites>FETCH-LOGICAL-c408t-665bb5761a2c57ff29ab378a807fbd3704f0427896d0bde62f1ec53cd57e2a3</cites><orcidid>0000-0002-1295-9708 ; 0000-0002-0636-7546</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0933365717300428$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28986108$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brown, Daniel</creatorcontrib><creatorcontrib>Aldea, Arantza</creatorcontrib><creatorcontrib>Harrison, Rachel</creatorcontrib><creatorcontrib>Martin, Clare</creatorcontrib><creatorcontrib>Bayley, Ian</creatorcontrib><title>Temporal case-based reasoning for type 1 diabetes mellitus bolus insulin decision support</title><title>Artificial intelligence in medicine</title><addtitle>Artif Intell Med</addtitle><description>Individuals with type 1 diabetes have to monitor their blood glucose levels, determine the quantity of insulin required to achieve optimal glycaemic control and administer it themselves subcutaneously, multiple times per day. To help with this process bolus calculators have been developed that suggest the appropriate dose. However these calculators do not automatically adapt to the specific circumstances of an individual and require fine-tuning of parameters, a process that often requires the input of an expert. To overcome the limitations of the traditional methods this paper proposes the use of an artificial intelligence technique, case-based reasoning, to personalise the bolus calculation. A novel aspect of our approach is the use of temporal sequences to take into account preceding events when recommending the bolus insulin doses rather than looking at events in isolation. The in silico results described in this paper show that given the initial conditions of the patient, the temporal retrieval algorithm identifies the most suitable case for reuse. Additionally through insulin-on-board adaptation and postprandial revision, the approach is able to learn and improve bolus predictions, reducing the blood glucose risk index by up to 27% after three revisions of a bolus solution.</description><subject>Artificial Intelligence</subject><subject>Biomarkers - blood</subject><subject>Blood Glucose - drug effects</subject><subject>Blood Glucose - metabolism</subject><subject>Case-based reasoning</subject><subject>Chi-Square Distribution</subject><subject>Computer Simulation</subject><subject>Decision Support Techniques</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Type 1 - blood</subject><subject>Diabetes Mellitus, Type 1 - diagnosis</subject><subject>Diabetes Mellitus, Type 1 - drug therapy</subject><subject>Diabetes Mellitus, Type 1 - psychology</subject><subject>Drug Dosage Calculations</subject><subject>Feature selection</subject><subject>Humans</subject><subject>Hypoglycemic Agents - administration &amp; dosage</subject><subject>Hypoglycemic Agents - adverse effects</subject><subject>Injections, Subcutaneous</subject><subject>Insulin - administration &amp; dosage</subject><subject>Insulin - adverse effects</subject><subject>Knowledge based systems</subject><subject>Self Administration</subject><subject>Similarity measures</subject><subject>Temporal</subject><subject>Time Factors</subject><subject>Treatment Outcome</subject><issn>0933-3657</issn><issn>1873-2860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtO3TAQQK0KBBfKH1SVl2ySjp3EdjZIFeJRCamLsmFl-TGpfJXEwU4q8ff11YUtm5nFnHkdQr4xqBkw8WNfm7RO6GsOTNbQ1wDyC9kxJZuKKwEnZAd901SN6OQ5uch5D4VomTgj51z1SjBQO_LyjNMSkxmpMxkrW4KnCU2Oc5j_0iEmur4tSBn1wVhcMdMJxzGsW6Y2jiWGOW9jmKlHF3KIM83bUiauX8npYMaMV-_5kvy5v3u-fayefj_8uv35VLkW1FoJ0VnbScEMd50cBt4b20hlFMjB-kZCO0DLpeqFB-tR8IGh6xrnO4ncNJfk-jh1SfF1w7zqKWRXLjQzxi1r1rdKdlJyXtD2iLoUc0446CWFyaQ3zUAflOq9PirVB6Uael2Elbbv7xs2e6h9NH04LMDNEcDy5b-ASWcXcHboQ0K3ah_D5xv-A36hiro</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Brown, Daniel</creator><creator>Aldea, Arantza</creator><creator>Harrison, Rachel</creator><creator>Martin, Clare</creator><creator>Bayley, Ian</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1295-9708</orcidid><orcidid>https://orcid.org/0000-0002-0636-7546</orcidid></search><sort><creationdate>201804</creationdate><title>Temporal case-based reasoning for type 1 diabetes mellitus bolus insulin decision support</title><author>Brown, Daniel ; Aldea, Arantza ; Harrison, Rachel ; Martin, Clare ; Bayley, Ian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-665bb5761a2c57ff29ab378a807fbd3704f0427896d0bde62f1ec53cd57e2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial Intelligence</topic><topic>Biomarkers - blood</topic><topic>Blood Glucose - drug effects</topic><topic>Blood Glucose - metabolism</topic><topic>Case-based reasoning</topic><topic>Chi-Square Distribution</topic><topic>Computer Simulation</topic><topic>Decision Support Techniques</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Type 1 - blood</topic><topic>Diabetes Mellitus, Type 1 - diagnosis</topic><topic>Diabetes Mellitus, Type 1 - drug therapy</topic><topic>Diabetes Mellitus, Type 1 - psychology</topic><topic>Drug Dosage Calculations</topic><topic>Feature selection</topic><topic>Humans</topic><topic>Hypoglycemic Agents - administration &amp; dosage</topic><topic>Hypoglycemic Agents - adverse effects</topic><topic>Injections, Subcutaneous</topic><topic>Insulin - administration &amp; dosage</topic><topic>Insulin - adverse effects</topic><topic>Knowledge based systems</topic><topic>Self Administration</topic><topic>Similarity measures</topic><topic>Temporal</topic><topic>Time Factors</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, Daniel</creatorcontrib><creatorcontrib>Aldea, Arantza</creatorcontrib><creatorcontrib>Harrison, Rachel</creatorcontrib><creatorcontrib>Martin, Clare</creatorcontrib><creatorcontrib>Bayley, Ian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Artificial intelligence in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, Daniel</au><au>Aldea, Arantza</au><au>Harrison, Rachel</au><au>Martin, Clare</au><au>Bayley, Ian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal case-based reasoning for type 1 diabetes mellitus bolus insulin decision support</atitle><jtitle>Artificial intelligence in medicine</jtitle><addtitle>Artif Intell Med</addtitle><date>2018-04</date><risdate>2018</risdate><volume>85</volume><spage>28</spage><epage>42</epage><pages>28-42</pages><issn>0933-3657</issn><eissn>1873-2860</eissn><abstract>Individuals with type 1 diabetes have to monitor their blood glucose levels, determine the quantity of insulin required to achieve optimal glycaemic control and administer it themselves subcutaneously, multiple times per day. To help with this process bolus calculators have been developed that suggest the appropriate dose. However these calculators do not automatically adapt to the specific circumstances of an individual and require fine-tuning of parameters, a process that often requires the input of an expert. To overcome the limitations of the traditional methods this paper proposes the use of an artificial intelligence technique, case-based reasoning, to personalise the bolus calculation. A novel aspect of our approach is the use of temporal sequences to take into account preceding events when recommending the bolus insulin doses rather than looking at events in isolation. The in silico results described in this paper show that given the initial conditions of the patient, the temporal retrieval algorithm identifies the most suitable case for reuse. Additionally through insulin-on-board adaptation and postprandial revision, the approach is able to learn and improve bolus predictions, reducing the blood glucose risk index by up to 27% after three revisions of a bolus solution.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>28986108</pmid><doi>10.1016/j.artmed.2017.09.007</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1295-9708</orcidid><orcidid>https://orcid.org/0000-0002-0636-7546</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0933-3657
ispartof Artificial intelligence in medicine, 2018-04, Vol.85, p.28-42
issn 0933-3657
1873-2860
language eng
recordid cdi_proquest_miscellaneous_1948757722
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Artificial Intelligence
Biomarkers - blood
Blood Glucose - drug effects
Blood Glucose - metabolism
Case-based reasoning
Chi-Square Distribution
Computer Simulation
Decision Support Techniques
Diabetes
Diabetes Mellitus, Type 1 - blood
Diabetes Mellitus, Type 1 - diagnosis
Diabetes Mellitus, Type 1 - drug therapy
Diabetes Mellitus, Type 1 - psychology
Drug Dosage Calculations
Feature selection
Humans
Hypoglycemic Agents - administration & dosage
Hypoglycemic Agents - adverse effects
Injections, Subcutaneous
Insulin - administration & dosage
Insulin - adverse effects
Knowledge based systems
Self Administration
Similarity measures
Temporal
Time Factors
Treatment Outcome
title Temporal case-based reasoning for type 1 diabetes mellitus bolus insulin decision support
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A45%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal%20case-based%20reasoning%20for%20type%201%20diabetes%20mellitus%20bolus%20insulin%20decision%20support&rft.jtitle=Artificial%20intelligence%20in%20medicine&rft.au=Brown,%20Daniel&rft.date=2018-04&rft.volume=85&rft.spage=28&rft.epage=42&rft.pages=28-42&rft.issn=0933-3657&rft.eissn=1873-2860&rft_id=info:doi/10.1016/j.artmed.2017.09.007&rft_dat=%3Cproquest_cross%3E1948757722%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1948757722&rft_id=info:pmid/28986108&rft_els_id=S0933365717300428&rfr_iscdi=true