Light Curves from an MHD Simulation of a Black Hole Accretion Disk

We use a relativistic ray-tracing code to calculate the light curves observed from a global, general relativistic, magnetohydrodynamic simulation of an accretion flow onto a Schwarzschild black hole. We apply three basic emission models to sample different properties of the time-dependent accretion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2006-11, Vol.651 (2), p.1031-1048
Hauptverfasser: Schnittman, Jeremy D, Krolik, Julian H, Hawley, John F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1048
container_issue 2
container_start_page 1031
container_title The Astrophysical journal
container_volume 651
creator Schnittman, Jeremy D
Krolik, Julian H
Hawley, John F
description We use a relativistic ray-tracing code to calculate the light curves observed from a global, general relativistic, magnetohydrodynamic simulation of an accretion flow onto a Schwarzschild black hole. We apply three basic emission models to sample different properties of the time-dependent accretion disk. With one of these models, which assumes thermal blackbody emission and free-free absorption, we can predict qualitative features of the high-frequency power spectrum from stellar-mass black holes in the "thermal dominant" state. The simulated power spectrum is characterized by a power law of index -3 and total rms fractional variance of 2% above 10 Hz. For each emission model, we find that the variability amplitude should increase with increasing inclination angle. On the basis of a newly developed formalism for quantifying the significance of quasi-periodic oscillations (QPOs) in simulation data, we find that these simulations are able to identify any such features with (rms/mean) amplitudes 1% near the orbital frequency at the innermost stable orbit. Initial results indicate the existence of transient QPO peaks with frequency ratios of nearly 2: 3 at a 99.9% confidence limit, but they are not generic features, because at any given time they are seen only from certain observer directions. In addition, we present detailed analysis of the azimuthal structure of the accretion disk and the evolution of density perturbations in the inner disk. These "hot-spot" structures appear to be roughly self-similar over a range of disk radii, with a single characteristic size dh= 25 and dr/r = 0.3, and typical lifetimes T sub(l) -0.3T sub(orb).
doi_str_mv 10.1086/507421
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_miscellaneous_19482930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19482930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-657dcbc9416b3dbe14a2103229c5fad658fce0432c84f23553da63c0862ba8be3</originalsourceid><addsrcrecordid>eNp9kUtLxDAUhYMoOI76G-JCXUg177bLeagjjLhQwV1I00Tj9GXSCv57W2dgFqKry-V-51zuuQAcY3SJUSKuOIoZwTtghDlNIkZ5vAtGCCEWCRq_7IODEN6HlqTpCEyX7vWthbPOf5oAra9LqCp4v5jDR1d2hWpdXcHaQgWnhdIruKgLAydae_MzmbuwOgR7VhXBHG3qGDzfXD_NFtHy4fZuNllGmsWijQSPc53plGGR0TwzmCmCESUk1dyqXPDEaoMYJTphllDOaa4E1f1FJFNJZugYnK99G19_dCa0snRBm6JQlam7IONeyxOMRE-e_UvilCUkpWgLal-H4I2VjXel8l8SIzmEKddh9uDpxlEFrQrrVaVd2NIJ5TQlw-aTNefq5m-vi9_M8BA5_EcKjiXpBRTLJrf0G-8jh_8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19482930</pqid></control><display><type>article</type><title>Light Curves from an MHD Simulation of a Black Hole Accretion Disk</title><source>IOP Publishing Free Content</source><creator>Schnittman, Jeremy D ; Krolik, Julian H ; Hawley, John F</creator><creatorcontrib>Schnittman, Jeremy D ; Krolik, Julian H ; Hawley, John F</creatorcontrib><description>We use a relativistic ray-tracing code to calculate the light curves observed from a global, general relativistic, magnetohydrodynamic simulation of an accretion flow onto a Schwarzschild black hole. We apply three basic emission models to sample different properties of the time-dependent accretion disk. With one of these models, which assumes thermal blackbody emission and free-free absorption, we can predict qualitative features of the high-frequency power spectrum from stellar-mass black holes in the "thermal dominant" state. The simulated power spectrum is characterized by a power law of index -3 and total rms fractional variance of 2% above 10 Hz. For each emission model, we find that the variability amplitude should increase with increasing inclination angle. On the basis of a newly developed formalism for quantifying the significance of quasi-periodic oscillations (QPOs) in simulation data, we find that these simulations are able to identify any such features with (rms/mean) amplitudes 1% near the orbital frequency at the innermost stable orbit. Initial results indicate the existence of transient QPO peaks with frequency ratios of nearly 2: 3 at a 99.9% confidence limit, but they are not generic features, because at any given time they are seen only from certain observer directions. In addition, we present detailed analysis of the azimuthal structure of the accretion disk and the evolution of density perturbations in the inner disk. These "hot-spot" structures appear to be roughly self-similar over a range of disk radii, with a single characteristic size dh= 25 and dr/r = 0.3, and typical lifetimes T sub(l) -0.3T sub(orb).</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1086/507421</identifier><identifier>CODEN: ASJOAB</identifier><language>eng</language><publisher>Chicago, IL: IOP Publishing</publisher><subject>Astronomy ; Earth, ocean, space ; Exact sciences and technology</subject><ispartof>The Astrophysical journal, 2006-11, Vol.651 (2), p.1031-1048</ispartof><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-657dcbc9416b3dbe14a2103229c5fad658fce0432c84f23553da63c0862ba8be3</citedby><cites>FETCH-LOGICAL-c476t-657dcbc9416b3dbe14a2103229c5fad658fce0432c84f23553da63c0862ba8be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1086/507421/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27609,27905,27906,53912</link.rule.ids><linktorsrc>$$Uhttp://iopscience.iop.org/0004-637X/651/2/1031$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18353926$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schnittman, Jeremy D</creatorcontrib><creatorcontrib>Krolik, Julian H</creatorcontrib><creatorcontrib>Hawley, John F</creatorcontrib><title>Light Curves from an MHD Simulation of a Black Hole Accretion Disk</title><title>The Astrophysical journal</title><description>We use a relativistic ray-tracing code to calculate the light curves observed from a global, general relativistic, magnetohydrodynamic simulation of an accretion flow onto a Schwarzschild black hole. We apply three basic emission models to sample different properties of the time-dependent accretion disk. With one of these models, which assumes thermal blackbody emission and free-free absorption, we can predict qualitative features of the high-frequency power spectrum from stellar-mass black holes in the "thermal dominant" state. The simulated power spectrum is characterized by a power law of index -3 and total rms fractional variance of 2% above 10 Hz. For each emission model, we find that the variability amplitude should increase with increasing inclination angle. On the basis of a newly developed formalism for quantifying the significance of quasi-periodic oscillations (QPOs) in simulation data, we find that these simulations are able to identify any such features with (rms/mean) amplitudes 1% near the orbital frequency at the innermost stable orbit. Initial results indicate the existence of transient QPO peaks with frequency ratios of nearly 2: 3 at a 99.9% confidence limit, but they are not generic features, because at any given time they are seen only from certain observer directions. In addition, we present detailed analysis of the azimuthal structure of the accretion disk and the evolution of density perturbations in the inner disk. These "hot-spot" structures appear to be roughly self-similar over a range of disk radii, with a single characteristic size dh= 25 and dr/r = 0.3, and typical lifetimes T sub(l) -0.3T sub(orb).</description><subject>Astronomy</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLxDAUhYMoOI76G-JCXUg177bLeagjjLhQwV1I00Tj9GXSCv57W2dgFqKry-V-51zuuQAcY3SJUSKuOIoZwTtghDlNIkZ5vAtGCCEWCRq_7IODEN6HlqTpCEyX7vWthbPOf5oAra9LqCp4v5jDR1d2hWpdXcHaQgWnhdIruKgLAydae_MzmbuwOgR7VhXBHG3qGDzfXD_NFtHy4fZuNllGmsWijQSPc53plGGR0TwzmCmCESUk1dyqXPDEaoMYJTphllDOaa4E1f1FJFNJZugYnK99G19_dCa0snRBm6JQlam7IONeyxOMRE-e_UvilCUkpWgLal-H4I2VjXel8l8SIzmEKddh9uDpxlEFrQrrVaVd2NIJ5TQlw-aTNefq5m-vi9_M8BA5_EcKjiXpBRTLJrf0G-8jh_8</recordid><startdate>20061110</startdate><enddate>20061110</enddate><creator>Schnittman, Jeremy D</creator><creator>Krolik, Julian H</creator><creator>Hawley, John F</creator><general>IOP Publishing</general><general>University of Chicago Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20061110</creationdate><title>Light Curves from an MHD Simulation of a Black Hole Accretion Disk</title><author>Schnittman, Jeremy D ; Krolik, Julian H ; Hawley, John F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-657dcbc9416b3dbe14a2103229c5fad658fce0432c84f23553da63c0862ba8be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Astronomy</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schnittman, Jeremy D</creatorcontrib><creatorcontrib>Krolik, Julian H</creatorcontrib><creatorcontrib>Hawley, John F</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schnittman, Jeremy D</au><au>Krolik, Julian H</au><au>Hawley, John F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Light Curves from an MHD Simulation of a Black Hole Accretion Disk</atitle><jtitle>The Astrophysical journal</jtitle><date>2006-11-10</date><risdate>2006</risdate><volume>651</volume><issue>2</issue><spage>1031</spage><epage>1048</epage><pages>1031-1048</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><coden>ASJOAB</coden><abstract>We use a relativistic ray-tracing code to calculate the light curves observed from a global, general relativistic, magnetohydrodynamic simulation of an accretion flow onto a Schwarzschild black hole. We apply three basic emission models to sample different properties of the time-dependent accretion disk. With one of these models, which assumes thermal blackbody emission and free-free absorption, we can predict qualitative features of the high-frequency power spectrum from stellar-mass black holes in the "thermal dominant" state. The simulated power spectrum is characterized by a power law of index -3 and total rms fractional variance of 2% above 10 Hz. For each emission model, we find that the variability amplitude should increase with increasing inclination angle. On the basis of a newly developed formalism for quantifying the significance of quasi-periodic oscillations (QPOs) in simulation data, we find that these simulations are able to identify any such features with (rms/mean) amplitudes 1% near the orbital frequency at the innermost stable orbit. Initial results indicate the existence of transient QPO peaks with frequency ratios of nearly 2: 3 at a 99.9% confidence limit, but they are not generic features, because at any given time they are seen only from certain observer directions. In addition, we present detailed analysis of the azimuthal structure of the accretion disk and the evolution of density perturbations in the inner disk. These "hot-spot" structures appear to be roughly self-similar over a range of disk radii, with a single characteristic size dh= 25 and dr/r = 0.3, and typical lifetimes T sub(l) -0.3T sub(orb).</abstract><cop>Chicago, IL</cop><pub>IOP Publishing</pub><doi>10.1086/507421</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2006-11, Vol.651 (2), p.1031-1048
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_miscellaneous_19482930
source IOP Publishing Free Content
subjects Astronomy
Earth, ocean, space
Exact sciences and technology
title Light Curves from an MHD Simulation of a Black Hole Accretion Disk
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A44%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Light%20Curves%20from%20an%20MHD%20Simulation%20of%20a%20Black%20Hole%20Accretion%20Disk&rft.jtitle=The%20Astrophysical%20journal&rft.au=Schnittman,%20Jeremy%20D&rft.date=2006-11-10&rft.volume=651&rft.issue=2&rft.spage=1031&rft.epage=1048&rft.pages=1031-1048&rft.issn=0004-637X&rft.eissn=1538-4357&rft.coden=ASJOAB&rft_id=info:doi/10.1086/507421&rft_dat=%3Cproquest_O3W%3E19482930%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19482930&rft_id=info:pmid/&rfr_iscdi=true