Turbulent bulk transfer coefficients and ozone deposition velocity in the International Consortium for Atmospheric Research into Transport and Transformation

In this paper, we examine observations of shallow, stable boundary layers in the cool waters of the Gulf of Maine between Cape Cod, Massachusetts, and Nova Scotia, obtained in the 2004 New England Air Quality Study (NEAQS‐04), which was part of the International Consortium for Atmospheric Research i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. D. Atmospheres 2006-12, Vol.111 (D23), p.n/a
Hauptverfasser: Fairall, C. W., Bariteau, L., Grachev, A. A., Hill, R. J., Wolfe, D. E., Brewer, W. A., Tucker, S. C., Hare, J. E., Angevine, W. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue D23
container_start_page
container_title Journal of Geophysical Research. D. Atmospheres
container_volume 111
creator Fairall, C. W.
Bariteau, L.
Grachev, A. A.
Hill, R. J.
Wolfe, D. E.
Brewer, W. A.
Tucker, S. C.
Hare, J. E.
Angevine, W. M.
description In this paper, we examine observations of shallow, stable boundary layers in the cool waters of the Gulf of Maine between Cape Cod, Massachusetts, and Nova Scotia, obtained in the 2004 New England Air Quality Study (NEAQS‐04), which was part of the International Consortium for Atmospheric Research into Transport and Transformation (ICARTT). The observations described herein were made from the NOAA Research Vessel Ronald H. Brown. The ship was instrumented for measurements of meteorological, gas‐phase and aerosol atmospheric chemistry variables. Meteorological instrumentation included a Doppler lidar, a radar wind profiler, rawinsonde equipment, and a surface flux package. In this study, we focus on direct comparisons of the NEAQS‐04 flux observations with the COARE bulk flux algorithm to investigate possible coastal influences on air‐sea interactions. We found significant suppression of the transfer coefficients for momentum, sensible heat, and latent heat; the suppression was correlated with lighter winds, more stable surface layers, S‐SE wind direction, and lower boundary layer heights. Analysis of the details shows the suppression is not a measurement, stability correction, or surface wave effect. The correlation with boundary layer height is consistent with an interpretation that our measurements at 18‐m height do not realize the full surface flux in shallow boundary layers. We also find that a bulk Richardson number threshold of 0.1 gives a better estimate of boundary layer height than 0.25 or 0.5. Mean ozone deposition velocity is estimated as 0.44 mm s−1, corresponding to a boundary removal timescale of about 1 day.
doi_str_mv 10.1029/2006JD007597
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19478182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19478182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3313-6ae68c95d10b6282b1a9457860491702720f50de5b00b7daa868b97658e41cdb3</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhiMEEqvSGw_gC5wIjJ3Edo7VLt12VQEtizhajjPRmiZxsB1geRfeFe9uBZzwZWTN9_2j0WTZcwqvKbD6DQPgmxWAqGrxKFswWvGcMWCPswXQUubAmHianYfwBdIrK14CXWS_trNv5h7HSFK5J9HrMXToiXHYddbY1AlEjy1xP92IpMXJBRutG8k37J2xcU_sSOIOyfUY0Y_60NM9WboxOB_tPJDOeXIRBxemHXpryB0G1N7skhgd2R4mTgk9Tjn-kjAcc55lTzrdBzx_qGfZp8u32-VVfvN-fb28uMlNUdAi5xq5NHXVUmg4k6yhui4rITmUNRXABIOugharBqARrdaSy6YWvJJYUtM2xVn28pQ7efd1xhDVYIPBvtcjujkoWpdCUskS-OoEGu9C8NipydtB-72ioA5nUP-eIeEvHnJ1MLrv0nLGhr-OLFlNKU9cceK-2x73_81Um_XdihaMF8nKT5YNEX_8sbS_V1wUolKf363V6vbDBsqrj-q2-A19c6iD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19478182</pqid></control><display><type>article</type><title>Turbulent bulk transfer coefficients and ozone deposition velocity in the International Consortium for Atmospheric Research into Transport and Transformation</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Alma/SFX Local Collection</source><creator>Fairall, C. W. ; Bariteau, L. ; Grachev, A. A. ; Hill, R. J. ; Wolfe, D. E. ; Brewer, W. A. ; Tucker, S. C. ; Hare, J. E. ; Angevine, W. M.</creator><creatorcontrib>Fairall, C. W. ; Bariteau, L. ; Grachev, A. A. ; Hill, R. J. ; Wolfe, D. E. ; Brewer, W. A. ; Tucker, S. C. ; Hare, J. E. ; Angevine, W. M.</creatorcontrib><description>In this paper, we examine observations of shallow, stable boundary layers in the cool waters of the Gulf of Maine between Cape Cod, Massachusetts, and Nova Scotia, obtained in the 2004 New England Air Quality Study (NEAQS‐04), which was part of the International Consortium for Atmospheric Research into Transport and Transformation (ICARTT). The observations described herein were made from the NOAA Research Vessel Ronald H. Brown. The ship was instrumented for measurements of meteorological, gas‐phase and aerosol atmospheric chemistry variables. Meteorological instrumentation included a Doppler lidar, a radar wind profiler, rawinsonde equipment, and a surface flux package. In this study, we focus on direct comparisons of the NEAQS‐04 flux observations with the COARE bulk flux algorithm to investigate possible coastal influences on air‐sea interactions. We found significant suppression of the transfer coefficients for momentum, sensible heat, and latent heat; the suppression was correlated with lighter winds, more stable surface layers, S‐SE wind direction, and lower boundary layer heights. Analysis of the details shows the suppression is not a measurement, stability correction, or surface wave effect. The correlation with boundary layer height is consistent with an interpretation that our measurements at 18‐m height do not realize the full surface flux in shallow boundary layers. We also find that a bulk Richardson number threshold of 0.1 gives a better estimate of boundary layer height than 0.25 or 0.5. Mean ozone deposition velocity is estimated as 0.44 mm s−1, corresponding to a boundary removal timescale of about 1 day.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2006JD007597</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>coastal fluxes ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; ozone deposition ; turbulent transfer</subject><ispartof>Journal of Geophysical Research. D. Atmospheres, 2006-12, Vol.111 (D23), p.n/a</ispartof><rights>Copyright 2006 by the American Geophysical Union.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3313-6ae68c95d10b6282b1a9457860491702720f50de5b00b7daa868b97658e41cdb3</citedby><cites>FETCH-LOGICAL-c3313-6ae68c95d10b6282b1a9457860491702720f50de5b00b7daa868b97658e41cdb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2006JD007597$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2006JD007597$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18429116$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fairall, C. W.</creatorcontrib><creatorcontrib>Bariteau, L.</creatorcontrib><creatorcontrib>Grachev, A. A.</creatorcontrib><creatorcontrib>Hill, R. J.</creatorcontrib><creatorcontrib>Wolfe, D. E.</creatorcontrib><creatorcontrib>Brewer, W. A.</creatorcontrib><creatorcontrib>Tucker, S. C.</creatorcontrib><creatorcontrib>Hare, J. E.</creatorcontrib><creatorcontrib>Angevine, W. M.</creatorcontrib><title>Turbulent bulk transfer coefficients and ozone deposition velocity in the International Consortium for Atmospheric Research into Transport and Transformation</title><title>Journal of Geophysical Research. D. Atmospheres</title><addtitle>J. Geophys. Res</addtitle><description>In this paper, we examine observations of shallow, stable boundary layers in the cool waters of the Gulf of Maine between Cape Cod, Massachusetts, and Nova Scotia, obtained in the 2004 New England Air Quality Study (NEAQS‐04), which was part of the International Consortium for Atmospheric Research into Transport and Transformation (ICARTT). The observations described herein were made from the NOAA Research Vessel Ronald H. Brown. The ship was instrumented for measurements of meteorological, gas‐phase and aerosol atmospheric chemistry variables. Meteorological instrumentation included a Doppler lidar, a radar wind profiler, rawinsonde equipment, and a surface flux package. In this study, we focus on direct comparisons of the NEAQS‐04 flux observations with the COARE bulk flux algorithm to investigate possible coastal influences on air‐sea interactions. We found significant suppression of the transfer coefficients for momentum, sensible heat, and latent heat; the suppression was correlated with lighter winds, more stable surface layers, S‐SE wind direction, and lower boundary layer heights. Analysis of the details shows the suppression is not a measurement, stability correction, or surface wave effect. The correlation with boundary layer height is consistent with an interpretation that our measurements at 18‐m height do not realize the full surface flux in shallow boundary layers. We also find that a bulk Richardson number threshold of 0.1 gives a better estimate of boundary layer height than 0.25 or 0.5. Mean ozone deposition velocity is estimated as 0.44 mm s−1, corresponding to a boundary removal timescale of about 1 day.</description><subject>coastal fluxes</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>ozone deposition</subject><subject>turbulent transfer</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAQhiMEEqvSGw_gC5wIjJ3Edo7VLt12VQEtizhajjPRmiZxsB1geRfeFe9uBZzwZWTN9_2j0WTZcwqvKbD6DQPgmxWAqGrxKFswWvGcMWCPswXQUubAmHianYfwBdIrK14CXWS_trNv5h7HSFK5J9HrMXToiXHYddbY1AlEjy1xP92IpMXJBRutG8k37J2xcU_sSOIOyfUY0Y_60NM9WboxOB_tPJDOeXIRBxemHXpryB0G1N7skhgd2R4mTgk9Tjn-kjAcc55lTzrdBzx_qGfZp8u32-VVfvN-fb28uMlNUdAi5xq5NHXVUmg4k6yhui4rITmUNRXABIOugharBqARrdaSy6YWvJJYUtM2xVn28pQ7efd1xhDVYIPBvtcjujkoWpdCUskS-OoEGu9C8NipydtB-72ioA5nUP-eIeEvHnJ1MLrv0nLGhr-OLFlNKU9cceK-2x73_81Um_XdihaMF8nKT5YNEX_8sbS_V1wUolKf363V6vbDBsqrj-q2-A19c6iD</recordid><startdate>20061216</startdate><enddate>20061216</enddate><creator>Fairall, C. W.</creator><creator>Bariteau, L.</creator><creator>Grachev, A. A.</creator><creator>Hill, R. J.</creator><creator>Wolfe, D. E.</creator><creator>Brewer, W. A.</creator><creator>Tucker, S. C.</creator><creator>Hare, J. E.</creator><creator>Angevine, W. M.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TV</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20061216</creationdate><title>Turbulent bulk transfer coefficients and ozone deposition velocity in the International Consortium for Atmospheric Research into Transport and Transformation</title><author>Fairall, C. W. ; Bariteau, L. ; Grachev, A. A. ; Hill, R. J. ; Wolfe, D. E. ; Brewer, W. A. ; Tucker, S. C. ; Hare, J. E. ; Angevine, W. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3313-6ae68c95d10b6282b1a9457860491702720f50de5b00b7daa868b97658e41cdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>coastal fluxes</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>ozone deposition</topic><topic>turbulent transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fairall, C. W.</creatorcontrib><creatorcontrib>Bariteau, L.</creatorcontrib><creatorcontrib>Grachev, A. A.</creatorcontrib><creatorcontrib>Hill, R. J.</creatorcontrib><creatorcontrib>Wolfe, D. E.</creatorcontrib><creatorcontrib>Brewer, W. A.</creatorcontrib><creatorcontrib>Tucker, S. C.</creatorcontrib><creatorcontrib>Hare, J. E.</creatorcontrib><creatorcontrib>Angevine, W. M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of Geophysical Research. D. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fairall, C. W.</au><au>Bariteau, L.</au><au>Grachev, A. A.</au><au>Hill, R. J.</au><au>Wolfe, D. E.</au><au>Brewer, W. A.</au><au>Tucker, S. C.</au><au>Hare, J. E.</au><au>Angevine, W. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulent bulk transfer coefficients and ozone deposition velocity in the International Consortium for Atmospheric Research into Transport and Transformation</atitle><jtitle>Journal of Geophysical Research. D. Atmospheres</jtitle><addtitle>J. Geophys. Res</addtitle><date>2006-12-16</date><risdate>2006</risdate><volume>111</volume><issue>D23</issue><epage>n/a</epage><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>In this paper, we examine observations of shallow, stable boundary layers in the cool waters of the Gulf of Maine between Cape Cod, Massachusetts, and Nova Scotia, obtained in the 2004 New England Air Quality Study (NEAQS‐04), which was part of the International Consortium for Atmospheric Research into Transport and Transformation (ICARTT). The observations described herein were made from the NOAA Research Vessel Ronald H. Brown. The ship was instrumented for measurements of meteorological, gas‐phase and aerosol atmospheric chemistry variables. Meteorological instrumentation included a Doppler lidar, a radar wind profiler, rawinsonde equipment, and a surface flux package. In this study, we focus on direct comparisons of the NEAQS‐04 flux observations with the COARE bulk flux algorithm to investigate possible coastal influences on air‐sea interactions. We found significant suppression of the transfer coefficients for momentum, sensible heat, and latent heat; the suppression was correlated with lighter winds, more stable surface layers, S‐SE wind direction, and lower boundary layer heights. Analysis of the details shows the suppression is not a measurement, stability correction, or surface wave effect. The correlation with boundary layer height is consistent with an interpretation that our measurements at 18‐m height do not realize the full surface flux in shallow boundary layers. We also find that a bulk Richardson number threshold of 0.1 gives a better estimate of boundary layer height than 0.25 or 0.5. Mean ozone deposition velocity is estimated as 0.44 mm s−1, corresponding to a boundary removal timescale of about 1 day.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2006JD007597</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research. D. Atmospheres, 2006-12, Vol.111 (D23), p.n/a
issn 0148-0227
2156-2202
language eng
recordid cdi_proquest_miscellaneous_19478182
source Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Alma/SFX Local Collection
subjects coastal fluxes
Earth sciences
Earth, ocean, space
Exact sciences and technology
ozone deposition
turbulent transfer
title Turbulent bulk transfer coefficients and ozone deposition velocity in the International Consortium for Atmospheric Research into Transport and Transformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A26%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulent%20bulk%20transfer%20coefficients%20and%20ozone%20deposition%20velocity%20in%20the%20International%20Consortium%20for%20Atmospheric%20Research%20into%20Transport%20and%20Transformation&rft.jtitle=Journal%20of%20Geophysical%20Research.%20D.%20Atmospheres&rft.au=Fairall,%20C.%20W.&rft.date=2006-12-16&rft.volume=111&rft.issue=D23&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2006JD007597&rft_dat=%3Cproquest_cross%3E19478182%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19478182&rft_id=info:pmid/&rfr_iscdi=true