The growth of finfish in global open-ocean aquaculture under climate change
Aquaculture production is projected to expand from land-based operations to the open ocean as demand for seafood grows and competition increases for inputs to land-based aquaculture, such as freshwater and suitable land. In contrast to land-based production, open-ocean aquaculture is constrained by...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2017-10, Vol.284 (1864), p.20170834-20170834 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20170834 |
---|---|
container_issue | 1864 |
container_start_page | 20170834 |
container_title | Proceedings of the Royal Society. B, Biological sciences |
container_volume | 284 |
creator | Klinger, Dane H. Levin, Simon A. Watson, James R. |
description | Aquaculture production is projected to expand from land-based operations to the open ocean as demand for seafood grows and competition increases for inputs to land-based aquaculture, such as freshwater and suitable land. In contrast to land-based production, open-ocean aquaculture is constrained by oceanographic factors, such as current speeds and seawater temperature, which are dynamic in time and space, and cannot easily be controlled. As such, the potential for offshore aquaculture to increase seafood production is tied to the physical state of the oceans. We employ a novel spatial model to estimate the potential of open-ocean finfish aquaculture globally, given physical, biological and technological constraints. Finfish growth potential for three common aquaculture species representing different thermal guilds—Atlantic salmon (Salmo salar), gilthead seabream (Sparus aurata) and cobia (Rachycentron canadum)—is compared across species and regions and with climate change, based on outputs of a high-resolution global climate model. Globally, there are ample areas that are physically suitable for fish growth and potential expansion of the nascent aquaculture industry. The effects of climate change are heterogeneous across species and regions, but areas with existing aquaculture industries are likely to see increases in growth rates. In areas where climate change results in reduced growth rates, adaptation measures, such as selective breeding, can probably offset potential production losses. |
doi_str_mv | 10.1098/rspb.2017.0834 |
format | Article |
fullrecord | <record><control><sourceid>proquest_royal</sourceid><recordid>TN_cdi_proquest_miscellaneous_1947620357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1947620357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-276a07d2446178afe2f322c9f5d02ece1c03993ee6debae38bc407af2d4550043</originalsourceid><addsrcrecordid>eNp9kc1v1DAQxS0EokvhyhFZ4sKBLLbjxPYFqS3lQ1QCQeFqOc4k65KNUztptf3rcdil6laCkw_-vfdm5iH0nJIlJUq-CXGoloxQsSQy5w_QgnJBM6YK_hAtiCpZJnnBDtCTGC8IIaqQxWN0wKQSUjC-QJ_PV4Db4K_HFfYNblzfuLjCrsdt5yvTYT9An3kLpsfmcjJ26sYpAJ76GgK2nVubEbBdmb6Fp-hRY7oIz3bvIfrx_vT85GN29uXDp5Ojs8wWTI0ZE6Uhomacl1RI0wBrcsasaoqaMLBALcmVygHKGioDuawsJ8I0rOZFQQjPD9HrrW-8hmGq9BDSFGGjvXH6nft5pH1odZw05YowkvC3Wzyxa6gt9GMw3Z5q_6d3K936K12UXDBZJoNXO4PgLyeIo167aKHrTA9-ipoqLsoUVIiEvryHXvgp9OkaiZI8l-kCs-FyS9ngYwzQ3A5DiZ5r1XOteq5Vz7UmwYu7K9zif3tMQL4Fgt-kMG8djJs72f-y_fU_1bfvX4-vmOSOypLPCkoEL5nSN27YWUmuXYwT6D_Ivv39tN-8m9N4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984385296</pqid></control><display><type>article</type><title>The growth of finfish in global open-ocean aquaculture under climate change</title><source>MEDLINE</source><source>PubMed Central</source><source>JSTOR</source><creator>Klinger, Dane H. ; Levin, Simon A. ; Watson, James R.</creator><creatorcontrib>Klinger, Dane H. ; Levin, Simon A. ; Watson, James R.</creatorcontrib><description>Aquaculture production is projected to expand from land-based operations to the open ocean as demand for seafood grows and competition increases for inputs to land-based aquaculture, such as freshwater and suitable land. In contrast to land-based production, open-ocean aquaculture is constrained by oceanographic factors, such as current speeds and seawater temperature, which are dynamic in time and space, and cannot easily be controlled. As such, the potential for offshore aquaculture to increase seafood production is tied to the physical state of the oceans. We employ a novel spatial model to estimate the potential of open-ocean finfish aquaculture globally, given physical, biological and technological constraints. Finfish growth potential for three common aquaculture species representing different thermal guilds—Atlantic salmon (Salmo salar), gilthead seabream (Sparus aurata) and cobia (Rachycentron canadum)—is compared across species and regions and with climate change, based on outputs of a high-resolution global climate model. Globally, there are ample areas that are physically suitable for fish growth and potential expansion of the nascent aquaculture industry. The effects of climate change are heterogeneous across species and regions, but areas with existing aquaculture industries are likely to see increases in growth rates. In areas where climate change results in reduced growth rates, adaptation measures, such as selective breeding, can probably offset potential production losses.</description><edition>Royal Society (Great Britain)</edition><identifier>ISSN: 0962-8452</identifier><identifier>ISSN: 1471-2954</identifier><identifier>EISSN: 1471-2954</identifier><identifier>DOI: 10.1098/rspb.2017.0834</identifier><identifier>PMID: 28978724</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Animals ; Aquaculture ; Breeding ; Carbon - analysis ; Climate Change ; Climate Change Adaptation ; Climate effects ; Climate models ; Fish ; Global Change And Conservation ; Growth rate ; Guilds ; Mariculture ; Models, Theoretical ; Oceans ; Oceans and Seas ; Offshore Aquaculture ; Open-Ocean Aquaculture ; Perciformes - growth & development ; Rachycentron canadum ; Salmo salar ; Salmo salar - growth & development ; Salmon ; Sea Bream - growth & development ; Seafood ; Seawater ; Seawater - chemistry ; Selective breeding ; Species ; Temperature ; Thermal Performance Curve ; Water Movements</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 2017-10, Vol.284 (1864), p.20170834-20170834</ispartof><rights>2017 The Author(s)</rights><rights>2017 The Author(s).</rights><rights>Copyright The Royal Society Publishing Oct 11, 2017</rights><rights>2017 The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-276a07d2446178afe2f322c9f5d02ece1c03993ee6debae38bc407af2d4550043</citedby><cites>FETCH-LOGICAL-c529t-276a07d2446178afe2f322c9f5d02ece1c03993ee6debae38bc407af2d4550043</cites><orcidid>0000-0001-8296-9015 ; 0000-0003-4178-8167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5647286/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5647286/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28978724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-149020$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Klinger, Dane H.</creatorcontrib><creatorcontrib>Levin, Simon A.</creatorcontrib><creatorcontrib>Watson, James R.</creatorcontrib><title>The growth of finfish in global open-ocean aquaculture under climate change</title><title>Proceedings of the Royal Society. B, Biological sciences</title><addtitle>Proc. R. Soc. B</addtitle><addtitle>Proc Biol Sci</addtitle><description>Aquaculture production is projected to expand from land-based operations to the open ocean as demand for seafood grows and competition increases for inputs to land-based aquaculture, such as freshwater and suitable land. In contrast to land-based production, open-ocean aquaculture is constrained by oceanographic factors, such as current speeds and seawater temperature, which are dynamic in time and space, and cannot easily be controlled. As such, the potential for offshore aquaculture to increase seafood production is tied to the physical state of the oceans. We employ a novel spatial model to estimate the potential of open-ocean finfish aquaculture globally, given physical, biological and technological constraints. Finfish growth potential for three common aquaculture species representing different thermal guilds—Atlantic salmon (Salmo salar), gilthead seabream (Sparus aurata) and cobia (Rachycentron canadum)—is compared across species and regions and with climate change, based on outputs of a high-resolution global climate model. Globally, there are ample areas that are physically suitable for fish growth and potential expansion of the nascent aquaculture industry. The effects of climate change are heterogeneous across species and regions, but areas with existing aquaculture industries are likely to see increases in growth rates. In areas where climate change results in reduced growth rates, adaptation measures, such as selective breeding, can probably offset potential production losses.</description><subject>Animals</subject><subject>Aquaculture</subject><subject>Breeding</subject><subject>Carbon - analysis</subject><subject>Climate Change</subject><subject>Climate Change Adaptation</subject><subject>Climate effects</subject><subject>Climate models</subject><subject>Fish</subject><subject>Global Change And Conservation</subject><subject>Growth rate</subject><subject>Guilds</subject><subject>Mariculture</subject><subject>Models, Theoretical</subject><subject>Oceans</subject><subject>Oceans and Seas</subject><subject>Offshore Aquaculture</subject><subject>Open-Ocean Aquaculture</subject><subject>Perciformes - growth & development</subject><subject>Rachycentron canadum</subject><subject>Salmo salar</subject><subject>Salmo salar - growth & development</subject><subject>Salmon</subject><subject>Sea Bream - growth & development</subject><subject>Seafood</subject><subject>Seawater</subject><subject>Seawater - chemistry</subject><subject>Selective breeding</subject><subject>Species</subject><subject>Temperature</subject><subject>Thermal Performance Curve</subject><subject>Water Movements</subject><issn>0962-8452</issn><issn>1471-2954</issn><issn>1471-2954</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1v1DAQxS0EokvhyhFZ4sKBLLbjxPYFqS3lQ1QCQeFqOc4k65KNUztptf3rcdil6laCkw_-vfdm5iH0nJIlJUq-CXGoloxQsSQy5w_QgnJBM6YK_hAtiCpZJnnBDtCTGC8IIaqQxWN0wKQSUjC-QJ_PV4Db4K_HFfYNblzfuLjCrsdt5yvTYT9An3kLpsfmcjJ26sYpAJ76GgK2nVubEbBdmb6Fp-hRY7oIz3bvIfrx_vT85GN29uXDp5Ojs8wWTI0ZE6Uhomacl1RI0wBrcsasaoqaMLBALcmVygHKGioDuawsJ8I0rOZFQQjPD9HrrW-8hmGq9BDSFGGjvXH6nft5pH1odZw05YowkvC3Wzyxa6gt9GMw3Z5q_6d3K936K12UXDBZJoNXO4PgLyeIo167aKHrTA9-ipoqLsoUVIiEvryHXvgp9OkaiZI8l-kCs-FyS9ngYwzQ3A5DiZ5r1XOteq5Vz7UmwYu7K9zif3tMQL4Fgt-kMG8djJs72f-y_fU_1bfvX4-vmOSOypLPCkoEL5nSN27YWUmuXYwT6D_Ivv39tN-8m9N4</recordid><startdate>20171011</startdate><enddate>20171011</enddate><creator>Klinger, Dane H.</creator><creator>Levin, Simon A.</creator><creator>Watson, James R.</creator><general>The Royal Society</general><general>The Royal Society Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG7</scope><orcidid>https://orcid.org/0000-0001-8296-9015</orcidid><orcidid>https://orcid.org/0000-0003-4178-8167</orcidid></search><sort><creationdate>20171011</creationdate><title>The growth of finfish in global open-ocean aquaculture under climate change</title><author>Klinger, Dane H. ; Levin, Simon A. ; Watson, James R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-276a07d2446178afe2f322c9f5d02ece1c03993ee6debae38bc407af2d4550043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Aquaculture</topic><topic>Breeding</topic><topic>Carbon - analysis</topic><topic>Climate Change</topic><topic>Climate Change Adaptation</topic><topic>Climate effects</topic><topic>Climate models</topic><topic>Fish</topic><topic>Global Change And Conservation</topic><topic>Growth rate</topic><topic>Guilds</topic><topic>Mariculture</topic><topic>Models, Theoretical</topic><topic>Oceans</topic><topic>Oceans and Seas</topic><topic>Offshore Aquaculture</topic><topic>Open-Ocean Aquaculture</topic><topic>Perciformes - growth & development</topic><topic>Rachycentron canadum</topic><topic>Salmo salar</topic><topic>Salmo salar - growth & development</topic><topic>Salmon</topic><topic>Sea Bream - growth & development</topic><topic>Seafood</topic><topic>Seawater</topic><topic>Seawater - chemistry</topic><topic>Selective breeding</topic><topic>Species</topic><topic>Temperature</topic><topic>Thermal Performance Curve</topic><topic>Water Movements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klinger, Dane H.</creatorcontrib><creatorcontrib>Levin, Simon A.</creatorcontrib><creatorcontrib>Watson, James R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Stockholms universitet</collection><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klinger, Dane H.</au><au>Levin, Simon A.</au><au>Watson, James R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The growth of finfish in global open-ocean aquaculture under climate change</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><stitle>Proc. R. Soc. B</stitle><addtitle>Proc Biol Sci</addtitle><date>2017-10-11</date><risdate>2017</risdate><volume>284</volume><issue>1864</issue><spage>20170834</spage><epage>20170834</epage><pages>20170834-20170834</pages><issn>0962-8452</issn><issn>1471-2954</issn><eissn>1471-2954</eissn><abstract>Aquaculture production is projected to expand from land-based operations to the open ocean as demand for seafood grows and competition increases for inputs to land-based aquaculture, such as freshwater and suitable land. In contrast to land-based production, open-ocean aquaculture is constrained by oceanographic factors, such as current speeds and seawater temperature, which are dynamic in time and space, and cannot easily be controlled. As such, the potential for offshore aquaculture to increase seafood production is tied to the physical state of the oceans. We employ a novel spatial model to estimate the potential of open-ocean finfish aquaculture globally, given physical, biological and technological constraints. Finfish growth potential for three common aquaculture species representing different thermal guilds—Atlantic salmon (Salmo salar), gilthead seabream (Sparus aurata) and cobia (Rachycentron canadum)—is compared across species and regions and with climate change, based on outputs of a high-resolution global climate model. Globally, there are ample areas that are physically suitable for fish growth and potential expansion of the nascent aquaculture industry. The effects of climate change are heterogeneous across species and regions, but areas with existing aquaculture industries are likely to see increases in growth rates. In areas where climate change results in reduced growth rates, adaptation measures, such as selective breeding, can probably offset potential production losses.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>28978724</pmid><doi>10.1098/rspb.2017.0834</doi><tpages>1</tpages><edition>Royal Society (Great Britain)</edition><orcidid>https://orcid.org/0000-0001-8296-9015</orcidid><orcidid>https://orcid.org/0000-0003-4178-8167</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8452 |
ispartof | Proceedings of the Royal Society. B, Biological sciences, 2017-10, Vol.284 (1864), p.20170834-20170834 |
issn | 0962-8452 1471-2954 1471-2954 |
language | eng |
recordid | cdi_proquest_miscellaneous_1947620357 |
source | MEDLINE; PubMed Central; JSTOR |
subjects | Animals Aquaculture Breeding Carbon - analysis Climate Change Climate Change Adaptation Climate effects Climate models Fish Global Change And Conservation Growth rate Guilds Mariculture Models, Theoretical Oceans Oceans and Seas Offshore Aquaculture Open-Ocean Aquaculture Perciformes - growth & development Rachycentron canadum Salmo salar Salmo salar - growth & development Salmon Sea Bream - growth & development Seafood Seawater Seawater - chemistry Selective breeding Species Temperature Thermal Performance Curve Water Movements |
title | The growth of finfish in global open-ocean aquaculture under climate change |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A49%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20growth%20of%20finfish%20in%20global%20open-ocean%20aquaculture%20under%20climate%20change&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Klinger,%20Dane%20H.&rft.date=2017-10-11&rft.volume=284&rft.issue=1864&rft.spage=20170834&rft.epage=20170834&rft.pages=20170834-20170834&rft.issn=0962-8452&rft.eissn=1471-2954&rft_id=info:doi/10.1098/rspb.2017.0834&rft_dat=%3Cproquest_royal%3E1947620357%3C/proquest_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1984385296&rft_id=info:pmid/28978724&rfr_iscdi=true |