The growth of finfish in global open-ocean aquaculture under climate change

Aquaculture production is projected to expand from land-based operations to the open ocean as demand for seafood grows and competition increases for inputs to land-based aquaculture, such as freshwater and suitable land. In contrast to land-based production, open-ocean aquaculture is constrained by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2017-10, Vol.284 (1864), p.20170834-20170834
Hauptverfasser: Klinger, Dane H., Levin, Simon A., Watson, James R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20170834
container_issue 1864
container_start_page 20170834
container_title Proceedings of the Royal Society. B, Biological sciences
container_volume 284
creator Klinger, Dane H.
Levin, Simon A.
Watson, James R.
description Aquaculture production is projected to expand from land-based operations to the open ocean as demand for seafood grows and competition increases for inputs to land-based aquaculture, such as freshwater and suitable land. In contrast to land-based production, open-ocean aquaculture is constrained by oceanographic factors, such as current speeds and seawater temperature, which are dynamic in time and space, and cannot easily be controlled. As such, the potential for offshore aquaculture to increase seafood production is tied to the physical state of the oceans. We employ a novel spatial model to estimate the potential of open-ocean finfish aquaculture globally, given physical, biological and technological constraints. Finfish growth potential for three common aquaculture species representing different thermal guilds—Atlantic salmon (Salmo salar), gilthead seabream (Sparus aurata) and cobia (Rachycentron canadum)—is compared across species and regions and with climate change, based on outputs of a high-resolution global climate model. Globally, there are ample areas that are physically suitable for fish growth and potential expansion of the nascent aquaculture industry. The effects of climate change are heterogeneous across species and regions, but areas with existing aquaculture industries are likely to see increases in growth rates. In areas where climate change results in reduced growth rates, adaptation measures, such as selective breeding, can probably offset potential production losses.
doi_str_mv 10.1098/rspb.2017.0834
format Article
fullrecord <record><control><sourceid>proquest_royal</sourceid><recordid>TN_cdi_proquest_miscellaneous_1947620357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1947620357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-276a07d2446178afe2f322c9f5d02ece1c03993ee6debae38bc407af2d4550043</originalsourceid><addsrcrecordid>eNp9kc1v1DAQxS0EokvhyhFZ4sKBLLbjxPYFqS3lQ1QCQeFqOc4k65KNUztptf3rcdil6laCkw_-vfdm5iH0nJIlJUq-CXGoloxQsSQy5w_QgnJBM6YK_hAtiCpZJnnBDtCTGC8IIaqQxWN0wKQSUjC-QJ_PV4Db4K_HFfYNblzfuLjCrsdt5yvTYT9An3kLpsfmcjJ26sYpAJ76GgK2nVubEbBdmb6Fp-hRY7oIz3bvIfrx_vT85GN29uXDp5Ojs8wWTI0ZE6Uhomacl1RI0wBrcsasaoqaMLBALcmVygHKGioDuawsJ8I0rOZFQQjPD9HrrW-8hmGq9BDSFGGjvXH6nft5pH1odZw05YowkvC3Wzyxa6gt9GMw3Z5q_6d3K936K12UXDBZJoNXO4PgLyeIo167aKHrTA9-ipoqLsoUVIiEvryHXvgp9OkaiZI8l-kCs-FyS9ngYwzQ3A5DiZ5r1XOteq5Vz7UmwYu7K9zif3tMQL4Fgt-kMG8djJs72f-y_fU_1bfvX4-vmOSOypLPCkoEL5nSN27YWUmuXYwT6D_Ivv39tN-8m9N4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984385296</pqid></control><display><type>article</type><title>The growth of finfish in global open-ocean aquaculture under climate change</title><source>MEDLINE</source><source>PubMed Central</source><source>JSTOR</source><creator>Klinger, Dane H. ; Levin, Simon A. ; Watson, James R.</creator><creatorcontrib>Klinger, Dane H. ; Levin, Simon A. ; Watson, James R.</creatorcontrib><description>Aquaculture production is projected to expand from land-based operations to the open ocean as demand for seafood grows and competition increases for inputs to land-based aquaculture, such as freshwater and suitable land. In contrast to land-based production, open-ocean aquaculture is constrained by oceanographic factors, such as current speeds and seawater temperature, which are dynamic in time and space, and cannot easily be controlled. As such, the potential for offshore aquaculture to increase seafood production is tied to the physical state of the oceans. We employ a novel spatial model to estimate the potential of open-ocean finfish aquaculture globally, given physical, biological and technological constraints. Finfish growth potential for three common aquaculture species representing different thermal guilds—Atlantic salmon (Salmo salar), gilthead seabream (Sparus aurata) and cobia (Rachycentron canadum)—is compared across species and regions and with climate change, based on outputs of a high-resolution global climate model. Globally, there are ample areas that are physically suitable for fish growth and potential expansion of the nascent aquaculture industry. The effects of climate change are heterogeneous across species and regions, but areas with existing aquaculture industries are likely to see increases in growth rates. In areas where climate change results in reduced growth rates, adaptation measures, such as selective breeding, can probably offset potential production losses.</description><edition>Royal Society (Great Britain)</edition><identifier>ISSN: 0962-8452</identifier><identifier>ISSN: 1471-2954</identifier><identifier>EISSN: 1471-2954</identifier><identifier>DOI: 10.1098/rspb.2017.0834</identifier><identifier>PMID: 28978724</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Animals ; Aquaculture ; Breeding ; Carbon - analysis ; Climate Change ; Climate Change Adaptation ; Climate effects ; Climate models ; Fish ; Global Change And Conservation ; Growth rate ; Guilds ; Mariculture ; Models, Theoretical ; Oceans ; Oceans and Seas ; Offshore Aquaculture ; Open-Ocean Aquaculture ; Perciformes - growth &amp; development ; Rachycentron canadum ; Salmo salar ; Salmo salar - growth &amp; development ; Salmon ; Sea Bream - growth &amp; development ; Seafood ; Seawater ; Seawater - chemistry ; Selective breeding ; Species ; Temperature ; Thermal Performance Curve ; Water Movements</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 2017-10, Vol.284 (1864), p.20170834-20170834</ispartof><rights>2017 The Author(s)</rights><rights>2017 The Author(s).</rights><rights>Copyright The Royal Society Publishing Oct 11, 2017</rights><rights>2017 The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-276a07d2446178afe2f322c9f5d02ece1c03993ee6debae38bc407af2d4550043</citedby><cites>FETCH-LOGICAL-c529t-276a07d2446178afe2f322c9f5d02ece1c03993ee6debae38bc407af2d4550043</cites><orcidid>0000-0001-8296-9015 ; 0000-0003-4178-8167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5647286/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5647286/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28978724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-149020$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Klinger, Dane H.</creatorcontrib><creatorcontrib>Levin, Simon A.</creatorcontrib><creatorcontrib>Watson, James R.</creatorcontrib><title>The growth of finfish in global open-ocean aquaculture under climate change</title><title>Proceedings of the Royal Society. B, Biological sciences</title><addtitle>Proc. R. Soc. B</addtitle><addtitle>Proc Biol Sci</addtitle><description>Aquaculture production is projected to expand from land-based operations to the open ocean as demand for seafood grows and competition increases for inputs to land-based aquaculture, such as freshwater and suitable land. In contrast to land-based production, open-ocean aquaculture is constrained by oceanographic factors, such as current speeds and seawater temperature, which are dynamic in time and space, and cannot easily be controlled. As such, the potential for offshore aquaculture to increase seafood production is tied to the physical state of the oceans. We employ a novel spatial model to estimate the potential of open-ocean finfish aquaculture globally, given physical, biological and technological constraints. Finfish growth potential for three common aquaculture species representing different thermal guilds—Atlantic salmon (Salmo salar), gilthead seabream (Sparus aurata) and cobia (Rachycentron canadum)—is compared across species and regions and with climate change, based on outputs of a high-resolution global climate model. Globally, there are ample areas that are physically suitable for fish growth and potential expansion of the nascent aquaculture industry. The effects of climate change are heterogeneous across species and regions, but areas with existing aquaculture industries are likely to see increases in growth rates. In areas where climate change results in reduced growth rates, adaptation measures, such as selective breeding, can probably offset potential production losses.</description><subject>Animals</subject><subject>Aquaculture</subject><subject>Breeding</subject><subject>Carbon - analysis</subject><subject>Climate Change</subject><subject>Climate Change Adaptation</subject><subject>Climate effects</subject><subject>Climate models</subject><subject>Fish</subject><subject>Global Change And Conservation</subject><subject>Growth rate</subject><subject>Guilds</subject><subject>Mariculture</subject><subject>Models, Theoretical</subject><subject>Oceans</subject><subject>Oceans and Seas</subject><subject>Offshore Aquaculture</subject><subject>Open-Ocean Aquaculture</subject><subject>Perciformes - growth &amp; development</subject><subject>Rachycentron canadum</subject><subject>Salmo salar</subject><subject>Salmo salar - growth &amp; development</subject><subject>Salmon</subject><subject>Sea Bream - growth &amp; development</subject><subject>Seafood</subject><subject>Seawater</subject><subject>Seawater - chemistry</subject><subject>Selective breeding</subject><subject>Species</subject><subject>Temperature</subject><subject>Thermal Performance Curve</subject><subject>Water Movements</subject><issn>0962-8452</issn><issn>1471-2954</issn><issn>1471-2954</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1v1DAQxS0EokvhyhFZ4sKBLLbjxPYFqS3lQ1QCQeFqOc4k65KNUztptf3rcdil6laCkw_-vfdm5iH0nJIlJUq-CXGoloxQsSQy5w_QgnJBM6YK_hAtiCpZJnnBDtCTGC8IIaqQxWN0wKQSUjC-QJ_PV4Db4K_HFfYNblzfuLjCrsdt5yvTYT9An3kLpsfmcjJ26sYpAJ76GgK2nVubEbBdmb6Fp-hRY7oIz3bvIfrx_vT85GN29uXDp5Ojs8wWTI0ZE6Uhomacl1RI0wBrcsasaoqaMLBALcmVygHKGioDuawsJ8I0rOZFQQjPD9HrrW-8hmGq9BDSFGGjvXH6nft5pH1odZw05YowkvC3Wzyxa6gt9GMw3Z5q_6d3K936K12UXDBZJoNXO4PgLyeIo167aKHrTA9-ipoqLsoUVIiEvryHXvgp9OkaiZI8l-kCs-FyS9ngYwzQ3A5DiZ5r1XOteq5Vz7UmwYu7K9zif3tMQL4Fgt-kMG8djJs72f-y_fU_1bfvX4-vmOSOypLPCkoEL5nSN27YWUmuXYwT6D_Ivv39tN-8m9N4</recordid><startdate>20171011</startdate><enddate>20171011</enddate><creator>Klinger, Dane H.</creator><creator>Levin, Simon A.</creator><creator>Watson, James R.</creator><general>The Royal Society</general><general>The Royal Society Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG7</scope><orcidid>https://orcid.org/0000-0001-8296-9015</orcidid><orcidid>https://orcid.org/0000-0003-4178-8167</orcidid></search><sort><creationdate>20171011</creationdate><title>The growth of finfish in global open-ocean aquaculture under climate change</title><author>Klinger, Dane H. ; Levin, Simon A. ; Watson, James R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-276a07d2446178afe2f322c9f5d02ece1c03993ee6debae38bc407af2d4550043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Aquaculture</topic><topic>Breeding</topic><topic>Carbon - analysis</topic><topic>Climate Change</topic><topic>Climate Change Adaptation</topic><topic>Climate effects</topic><topic>Climate models</topic><topic>Fish</topic><topic>Global Change And Conservation</topic><topic>Growth rate</topic><topic>Guilds</topic><topic>Mariculture</topic><topic>Models, Theoretical</topic><topic>Oceans</topic><topic>Oceans and Seas</topic><topic>Offshore Aquaculture</topic><topic>Open-Ocean Aquaculture</topic><topic>Perciformes - growth &amp; development</topic><topic>Rachycentron canadum</topic><topic>Salmo salar</topic><topic>Salmo salar - growth &amp; development</topic><topic>Salmon</topic><topic>Sea Bream - growth &amp; development</topic><topic>Seafood</topic><topic>Seawater</topic><topic>Seawater - chemistry</topic><topic>Selective breeding</topic><topic>Species</topic><topic>Temperature</topic><topic>Thermal Performance Curve</topic><topic>Water Movements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klinger, Dane H.</creatorcontrib><creatorcontrib>Levin, Simon A.</creatorcontrib><creatorcontrib>Watson, James R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Stockholms universitet</collection><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klinger, Dane H.</au><au>Levin, Simon A.</au><au>Watson, James R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The growth of finfish in global open-ocean aquaculture under climate change</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><stitle>Proc. R. Soc. B</stitle><addtitle>Proc Biol Sci</addtitle><date>2017-10-11</date><risdate>2017</risdate><volume>284</volume><issue>1864</issue><spage>20170834</spage><epage>20170834</epage><pages>20170834-20170834</pages><issn>0962-8452</issn><issn>1471-2954</issn><eissn>1471-2954</eissn><abstract>Aquaculture production is projected to expand from land-based operations to the open ocean as demand for seafood grows and competition increases for inputs to land-based aquaculture, such as freshwater and suitable land. In contrast to land-based production, open-ocean aquaculture is constrained by oceanographic factors, such as current speeds and seawater temperature, which are dynamic in time and space, and cannot easily be controlled. As such, the potential for offshore aquaculture to increase seafood production is tied to the physical state of the oceans. We employ a novel spatial model to estimate the potential of open-ocean finfish aquaculture globally, given physical, biological and technological constraints. Finfish growth potential for three common aquaculture species representing different thermal guilds—Atlantic salmon (Salmo salar), gilthead seabream (Sparus aurata) and cobia (Rachycentron canadum)—is compared across species and regions and with climate change, based on outputs of a high-resolution global climate model. Globally, there are ample areas that are physically suitable for fish growth and potential expansion of the nascent aquaculture industry. The effects of climate change are heterogeneous across species and regions, but areas with existing aquaculture industries are likely to see increases in growth rates. In areas where climate change results in reduced growth rates, adaptation measures, such as selective breeding, can probably offset potential production losses.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>28978724</pmid><doi>10.1098/rspb.2017.0834</doi><tpages>1</tpages><edition>Royal Society (Great Britain)</edition><orcidid>https://orcid.org/0000-0001-8296-9015</orcidid><orcidid>https://orcid.org/0000-0003-4178-8167</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-8452
ispartof Proceedings of the Royal Society. B, Biological sciences, 2017-10, Vol.284 (1864), p.20170834-20170834
issn 0962-8452
1471-2954
1471-2954
language eng
recordid cdi_proquest_miscellaneous_1947620357
source MEDLINE; PubMed Central; JSTOR
subjects Animals
Aquaculture
Breeding
Carbon - analysis
Climate Change
Climate Change Adaptation
Climate effects
Climate models
Fish
Global Change And Conservation
Growth rate
Guilds
Mariculture
Models, Theoretical
Oceans
Oceans and Seas
Offshore Aquaculture
Open-Ocean Aquaculture
Perciformes - growth & development
Rachycentron canadum
Salmo salar
Salmo salar - growth & development
Salmon
Sea Bream - growth & development
Seafood
Seawater
Seawater - chemistry
Selective breeding
Species
Temperature
Thermal Performance Curve
Water Movements
title The growth of finfish in global open-ocean aquaculture under climate change
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A49%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20growth%20of%20finfish%20in%20global%20open-ocean%20aquaculture%20under%20climate%20change&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Klinger,%20Dane%20H.&rft.date=2017-10-11&rft.volume=284&rft.issue=1864&rft.spage=20170834&rft.epage=20170834&rft.pages=20170834-20170834&rft.issn=0962-8452&rft.eissn=1471-2954&rft_id=info:doi/10.1098/rspb.2017.0834&rft_dat=%3Cproquest_royal%3E1947620357%3C/proquest_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1984385296&rft_id=info:pmid/28978724&rfr_iscdi=true