Effects of Solid Fraction on Droplet Wetting and Vapor Condensation: A Molecular Dynamic Simulation Study

Recently, numerous studies focused on the wetting process of droplets on various surfaces at a microscale level. However, there are a limited number of studies about the mechanism of condensation on patterned surfaces. The present study performed the dynamic wetting behavior of water droplets and co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2017-10, Vol.33 (43), p.12379-12388
Hauptverfasser: Gao, Shan, Liao, Quanwen, Liu, Wei, Liu, Zhichun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12388
container_issue 43
container_start_page 12379
container_title Langmuir
container_volume 33
creator Gao, Shan
Liao, Quanwen
Liu, Wei
Liu, Zhichun
description Recently, numerous studies focused on the wetting process of droplets on various surfaces at a microscale level. However, there are a limited number of studies about the mechanism of condensation on patterned surfaces. The present study performed the dynamic wetting behavior of water droplets and condensation process of water molecules on substrates with different pillar structure parameters, through molecular dynamic simulation. The dynamic wetting results indicated that droplets exhibit Cassie state, PW state, and Wenzel state successively on textured surfaces with decreasing solid fraction. The droplets possess a higher static contact angle and a smaller spreading exponent on textured surfaces than those on smooth surfaces. The condensation processes, including the formation, growth, and coalescence of a nanodroplet, are simulated and quantitatively recorded, which are difficult to be observed by experiments. In addition, a wetting transition and a dewetting transition were observed and analyzed in condensation on textured surfaces. Combining these simulation results with previous theoretical and experimental studies will guide us to understand the hypostasis and mechanism of the condensation more clearly.
doi_str_mv 10.1021/acs.langmuir.7b03193
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1947618465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1947618465</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-ae326b832e11ca130b24912e166a61c85546b694df75b5f8f5e0481b80bc95b93</originalsourceid><addsrcrecordid>eNp9kM1qGzEUhUVJqB23b1CKltmMqzv6Gak748RJwCUL92c5SBpNUJgZudLMwm9fubazDFwQF75zLvoQ-gJkCaSEb9qmZaeHl37ycVkZQkHRD2gOvCQFl2V1heakYrSomKAzdJPSKyFEUaY-olkplSQSYI78fds6OyYcWrwLnW_wJmo7-jDgPHcx7Ds34j9uHP3wgvXQ4N96HyJeh6FxQ9JH8jte4R-hc3bqdMR3h0H33uKd7_P-v2k3Ts3hE7pudZfc5_O7QL829z_Xj8X2-eFpvdoWmgEbC-1oKYykpQOwGigxJVOQNyG0ACs5Z8IIxZq24oa3suWOMAlGEmMVN4ou0O2pdx_D38mlse59sq7LrlyYUg2KVQIkEzyj7ITaGFKKrq330fc6Hmog9VFynSXXF8n1WXKOfT1fmEzvmrfQxWoGyAk4xl_DFIf84fc7_wHPDowb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1947618465</pqid></control><display><type>article</type><title>Effects of Solid Fraction on Droplet Wetting and Vapor Condensation: A Molecular Dynamic Simulation Study</title><source>ACS Journals: American Chemical Society Web Editions</source><creator>Gao, Shan ; Liao, Quanwen ; Liu, Wei ; Liu, Zhichun</creator><creatorcontrib>Gao, Shan ; Liao, Quanwen ; Liu, Wei ; Liu, Zhichun</creatorcontrib><description>Recently, numerous studies focused on the wetting process of droplets on various surfaces at a microscale level. However, there are a limited number of studies about the mechanism of condensation on patterned surfaces. The present study performed the dynamic wetting behavior of water droplets and condensation process of water molecules on substrates with different pillar structure parameters, through molecular dynamic simulation. The dynamic wetting results indicated that droplets exhibit Cassie state, PW state, and Wenzel state successively on textured surfaces with decreasing solid fraction. The droplets possess a higher static contact angle and a smaller spreading exponent on textured surfaces than those on smooth surfaces. The condensation processes, including the formation, growth, and coalescence of a nanodroplet, are simulated and quantitatively recorded, which are difficult to be observed by experiments. In addition, a wetting transition and a dewetting transition were observed and analyzed in condensation on textured surfaces. Combining these simulation results with previous theoretical and experimental studies will guide us to understand the hypostasis and mechanism of the condensation more clearly.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.7b03193</identifier><identifier>PMID: 28980811</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Langmuir, 2017-10, Vol.33 (43), p.12379-12388</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-ae326b832e11ca130b24912e166a61c85546b694df75b5f8f5e0481b80bc95b93</citedby><cites>FETCH-LOGICAL-a414t-ae326b832e11ca130b24912e166a61c85546b694df75b5f8f5e0481b80bc95b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.7b03193$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.7b03193$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28980811$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Shan</creatorcontrib><creatorcontrib>Liao, Quanwen</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Liu, Zhichun</creatorcontrib><title>Effects of Solid Fraction on Droplet Wetting and Vapor Condensation: A Molecular Dynamic Simulation Study</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Recently, numerous studies focused on the wetting process of droplets on various surfaces at a microscale level. However, there are a limited number of studies about the mechanism of condensation on patterned surfaces. The present study performed the dynamic wetting behavior of water droplets and condensation process of water molecules on substrates with different pillar structure parameters, through molecular dynamic simulation. The dynamic wetting results indicated that droplets exhibit Cassie state, PW state, and Wenzel state successively on textured surfaces with decreasing solid fraction. The droplets possess a higher static contact angle and a smaller spreading exponent on textured surfaces than those on smooth surfaces. The condensation processes, including the formation, growth, and coalescence of a nanodroplet, are simulated and quantitatively recorded, which are difficult to be observed by experiments. In addition, a wetting transition and a dewetting transition were observed and analyzed in condensation on textured surfaces. Combining these simulation results with previous theoretical and experimental studies will guide us to understand the hypostasis and mechanism of the condensation more clearly.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1qGzEUhUVJqB23b1CKltmMqzv6Gak748RJwCUL92c5SBpNUJgZudLMwm9fubazDFwQF75zLvoQ-gJkCaSEb9qmZaeHl37ycVkZQkHRD2gOvCQFl2V1heakYrSomKAzdJPSKyFEUaY-olkplSQSYI78fds6OyYcWrwLnW_wJmo7-jDgPHcx7Ds34j9uHP3wgvXQ4N96HyJeh6FxQ9JH8jte4R-hc3bqdMR3h0H33uKd7_P-v2k3Ts3hE7pudZfc5_O7QL829z_Xj8X2-eFpvdoWmgEbC-1oKYykpQOwGigxJVOQNyG0ACs5Z8IIxZq24oa3suWOMAlGEmMVN4ou0O2pdx_D38mlse59sq7LrlyYUg2KVQIkEzyj7ITaGFKKrq330fc6Hmog9VFynSXXF8n1WXKOfT1fmEzvmrfQxWoGyAk4xl_DFIf84fc7_wHPDowb</recordid><startdate>20171031</startdate><enddate>20171031</enddate><creator>Gao, Shan</creator><creator>Liao, Quanwen</creator><creator>Liu, Wei</creator><creator>Liu, Zhichun</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20171031</creationdate><title>Effects of Solid Fraction on Droplet Wetting and Vapor Condensation: A Molecular Dynamic Simulation Study</title><author>Gao, Shan ; Liao, Quanwen ; Liu, Wei ; Liu, Zhichun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-ae326b832e11ca130b24912e166a61c85546b694df75b5f8f5e0481b80bc95b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Shan</creatorcontrib><creatorcontrib>Liao, Quanwen</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Liu, Zhichun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Shan</au><au>Liao, Quanwen</au><au>Liu, Wei</au><au>Liu, Zhichun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Solid Fraction on Droplet Wetting and Vapor Condensation: A Molecular Dynamic Simulation Study</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2017-10-31</date><risdate>2017</risdate><volume>33</volume><issue>43</issue><spage>12379</spage><epage>12388</epage><pages>12379-12388</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>Recently, numerous studies focused on the wetting process of droplets on various surfaces at a microscale level. However, there are a limited number of studies about the mechanism of condensation on patterned surfaces. The present study performed the dynamic wetting behavior of water droplets and condensation process of water molecules on substrates with different pillar structure parameters, through molecular dynamic simulation. The dynamic wetting results indicated that droplets exhibit Cassie state, PW state, and Wenzel state successively on textured surfaces with decreasing solid fraction. The droplets possess a higher static contact angle and a smaller spreading exponent on textured surfaces than those on smooth surfaces. The condensation processes, including the formation, growth, and coalescence of a nanodroplet, are simulated and quantitatively recorded, which are difficult to be observed by experiments. In addition, a wetting transition and a dewetting transition were observed and analyzed in condensation on textured surfaces. Combining these simulation results with previous theoretical and experimental studies will guide us to understand the hypostasis and mechanism of the condensation more clearly.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28980811</pmid><doi>10.1021/acs.langmuir.7b03193</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2017-10, Vol.33 (43), p.12379-12388
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_1947618465
source ACS Journals: American Chemical Society Web Editions
title Effects of Solid Fraction on Droplet Wetting and Vapor Condensation: A Molecular Dynamic Simulation Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A32%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Solid%20Fraction%20on%20Droplet%20Wetting%20and%20Vapor%20Condensation:%20A%20Molecular%20Dynamic%20Simulation%20Study&rft.jtitle=Langmuir&rft.au=Gao,%20Shan&rft.date=2017-10-31&rft.volume=33&rft.issue=43&rft.spage=12379&rft.epage=12388&rft.pages=12379-12388&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.7b03193&rft_dat=%3Cproquest_cross%3E1947618465%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1947618465&rft_id=info:pmid/28980811&rfr_iscdi=true