Magnetic Resonance Imaging of Neurotransmitter-Related Molecules

Molecular imaging implies the method capable of pictorially displaying distribution of target molecules and their relative concentration in space. In clinical medicine, where non-invasiveness is mandatory, diagnostic molecular imaging has been considered virtually identical to positron emission tomo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Nippon Medical School 2017/08/15, Vol.84(4), pp.160-164
Hauptverfasser: Igarashi, Hironaka, Ueki, Satoshi, Ohno, Ken, Ohkubo, Masaki, Suzuki, Yuji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 164
container_issue 4
container_start_page 160
container_title Journal of Nippon Medical School
container_volume 84
creator Igarashi, Hironaka
Ueki, Satoshi
Ohno, Ken
Ohkubo, Masaki
Suzuki, Yuji
description Molecular imaging implies the method capable of pictorially displaying distribution of target molecules and their relative concentration in space. In clinical medicine, where non-invasiveness is mandatory, diagnostic molecular imaging has been considered virtually identical to positron emission tomography (PET). However, there is another powerful, apparently underutilized molecular imaging, namely, proton magnetic resonance spectroscopic imaging (1H-MRSI). The technique can detect target molecules endogenous in brain in virtue of their own specific resonance frequencies (chemical shift) and can create quantitative images of each molecule. 1H-MRSI is conventionally utilized for imaging relatively easily detectable molecules such as N-acetyl-aspartate or lactate. More recently, however, the method is extended into imaging of more challenging molecules such as glutamate or γ-aminobutyric acid (GABA). In this small review, we summarize basic concept of 1H-MRSI and introduce an advanced technique, i.e. chemical exchange saturation transfer magnetic resonance imaging (CEST MRI), which made realistic glutamate imaging in vivo possible.
doi_str_mv 10.1272/jnms.84.160
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1947613678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1947613678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-2e22fb2a8d7be866191387fde5618b2d14cbd3b033838f59b07238fb6822089f3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQQBdRrFZP3iVHQVL3K7ubiyjFj0KrUPS8bJJJTEk2dXdz8N-b2prTDMzjMTyErgieESrp3ca2fqb4jAh8hM4I4zJmHKfHf3sScyHFBJ17v8GYsSQRp2hCVSqVSpMz9LAylYVQ59EafGeNzSFatKaqbRV1ZfQGveuCM9a3dQjg4jU0JkARrboG8r4Bf4FOStN4uDzMKfp8fvqYv8bL95fF_HEZ54mkIaZAaZlRowqZgRKCpIQpWRaQCKIyWhCeZwXLhg8VU2WSZljSYcmEohSrtGRTdLP3bl333YMPuq19Dk1jLHS91yTlUhAmpBrQ2z2au857B6Xeuro17kcTrHfJ9C6ZVlwPyQb6-iDusxaKkf1vNAD3e2Djg6lgBIwbsjUwyvjBOB7yL-M0WPYLWNR94g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1947613678</pqid></control><display><type>article</type><title>Magnetic Resonance Imaging of Neurotransmitter-Related Molecules</title><source>MEDLINE</source><source>J-STAGE (Japan Science &amp; Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><creator>Igarashi, Hironaka ; Ueki, Satoshi ; Ohno, Ken ; Ohkubo, Masaki ; Suzuki, Yuji</creator><creatorcontrib>Igarashi, Hironaka ; Ueki, Satoshi ; Ohno, Ken ; Ohkubo, Masaki ; Suzuki, Yuji</creatorcontrib><description>Molecular imaging implies the method capable of pictorially displaying distribution of target molecules and their relative concentration in space. In clinical medicine, where non-invasiveness is mandatory, diagnostic molecular imaging has been considered virtually identical to positron emission tomography (PET). However, there is another powerful, apparently underutilized molecular imaging, namely, proton magnetic resonance spectroscopic imaging (1H-MRSI). The technique can detect target molecules endogenous in brain in virtue of their own specific resonance frequencies (chemical shift) and can create quantitative images of each molecule. 1H-MRSI is conventionally utilized for imaging relatively easily detectable molecules such as N-acetyl-aspartate or lactate. More recently, however, the method is extended into imaging of more challenging molecules such as glutamate or γ-aminobutyric acid (GABA). In this small review, we summarize basic concept of 1H-MRSI and introduce an advanced technique, i.e. chemical exchange saturation transfer magnetic resonance imaging (CEST MRI), which made realistic glutamate imaging in vivo possible.</description><identifier>ISSN: 1345-4676</identifier><identifier>EISSN: 1347-3409</identifier><identifier>DOI: 10.1272/jnms.84.160</identifier><identifier>PMID: 28978895</identifier><language>eng</language><publisher>Japan: The Medical Association of Nippon Medical School</publisher><subject>Aspartic Acid - analogs &amp; derivatives ; Brain ; Diagnostic Imaging - methods ; Diagnostic Imaging - trends ; GABA ; gamma-Aminobutyric Acid ; glutamate ; Glutamates ; Humans ; Lactates ; Molecular Imaging - methods ; Molecular Imaging - trends ; MRI ; MRS ; Neurotransmitter Agents ; Positron-Emission Tomography - methods ; Positron-Emission Tomography - trends ; Proton Magnetic Resonance Spectroscopy - methods</subject><ispartof>Journal of Nippon Medical School, 2017/08/15, Vol.84(4), pp.160-164</ispartof><rights>2017 by the Medical Association of Nippon Medical School</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c572t-2e22fb2a8d7be866191387fde5618b2d14cbd3b033838f59b07238fb6822089f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,1887,4028,27932,27933,27934</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28978895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Igarashi, Hironaka</creatorcontrib><creatorcontrib>Ueki, Satoshi</creatorcontrib><creatorcontrib>Ohno, Ken</creatorcontrib><creatorcontrib>Ohkubo, Masaki</creatorcontrib><creatorcontrib>Suzuki, Yuji</creatorcontrib><title>Magnetic Resonance Imaging of Neurotransmitter-Related Molecules</title><title>Journal of Nippon Medical School</title><addtitle>J Nippon Med Sch</addtitle><description>Molecular imaging implies the method capable of pictorially displaying distribution of target molecules and their relative concentration in space. In clinical medicine, where non-invasiveness is mandatory, diagnostic molecular imaging has been considered virtually identical to positron emission tomography (PET). However, there is another powerful, apparently underutilized molecular imaging, namely, proton magnetic resonance spectroscopic imaging (1H-MRSI). The technique can detect target molecules endogenous in brain in virtue of their own specific resonance frequencies (chemical shift) and can create quantitative images of each molecule. 1H-MRSI is conventionally utilized for imaging relatively easily detectable molecules such as N-acetyl-aspartate or lactate. More recently, however, the method is extended into imaging of more challenging molecules such as glutamate or γ-aminobutyric acid (GABA). In this small review, we summarize basic concept of 1H-MRSI and introduce an advanced technique, i.e. chemical exchange saturation transfer magnetic resonance imaging (CEST MRI), which made realistic glutamate imaging in vivo possible.</description><subject>Aspartic Acid - analogs &amp; derivatives</subject><subject>Brain</subject><subject>Diagnostic Imaging - methods</subject><subject>Diagnostic Imaging - trends</subject><subject>GABA</subject><subject>gamma-Aminobutyric Acid</subject><subject>glutamate</subject><subject>Glutamates</subject><subject>Humans</subject><subject>Lactates</subject><subject>Molecular Imaging - methods</subject><subject>Molecular Imaging - trends</subject><subject>MRI</subject><subject>MRS</subject><subject>Neurotransmitter Agents</subject><subject>Positron-Emission Tomography - methods</subject><subject>Positron-Emission Tomography - trends</subject><subject>Proton Magnetic Resonance Spectroscopy - methods</subject><issn>1345-4676</issn><issn>1347-3409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kE1Lw0AQQBdRrFZP3iVHQVL3K7ubiyjFj0KrUPS8bJJJTEk2dXdz8N-b2prTDMzjMTyErgieESrp3ca2fqb4jAh8hM4I4zJmHKfHf3sScyHFBJ17v8GYsSQRp2hCVSqVSpMz9LAylYVQ59EafGeNzSFatKaqbRV1ZfQGveuCM9a3dQjg4jU0JkARrboG8r4Bf4FOStN4uDzMKfp8fvqYv8bL95fF_HEZ54mkIaZAaZlRowqZgRKCpIQpWRaQCKIyWhCeZwXLhg8VU2WSZljSYcmEohSrtGRTdLP3bl333YMPuq19Dk1jLHS91yTlUhAmpBrQ2z2au857B6Xeuro17kcTrHfJ9C6ZVlwPyQb6-iDusxaKkf1vNAD3e2Djg6lgBIwbsjUwyvjBOB7yL-M0WPYLWNR94g</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Igarashi, Hironaka</creator><creator>Ueki, Satoshi</creator><creator>Ohno, Ken</creator><creator>Ohkubo, Masaki</creator><creator>Suzuki, Yuji</creator><general>The Medical Association of Nippon Medical School</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>2017</creationdate><title>Magnetic Resonance Imaging of Neurotransmitter-Related Molecules</title><author>Igarashi, Hironaka ; Ueki, Satoshi ; Ohno, Ken ; Ohkubo, Masaki ; Suzuki, Yuji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-2e22fb2a8d7be866191387fde5618b2d14cbd3b033838f59b07238fb6822089f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aspartic Acid - analogs &amp; derivatives</topic><topic>Brain</topic><topic>Diagnostic Imaging - methods</topic><topic>Diagnostic Imaging - trends</topic><topic>GABA</topic><topic>gamma-Aminobutyric Acid</topic><topic>glutamate</topic><topic>Glutamates</topic><topic>Humans</topic><topic>Lactates</topic><topic>Molecular Imaging - methods</topic><topic>Molecular Imaging - trends</topic><topic>MRI</topic><topic>MRS</topic><topic>Neurotransmitter Agents</topic><topic>Positron-Emission Tomography - methods</topic><topic>Positron-Emission Tomography - trends</topic><topic>Proton Magnetic Resonance Spectroscopy - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Igarashi, Hironaka</creatorcontrib><creatorcontrib>Ueki, Satoshi</creatorcontrib><creatorcontrib>Ohno, Ken</creatorcontrib><creatorcontrib>Ohkubo, Masaki</creatorcontrib><creatorcontrib>Suzuki, Yuji</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Nippon Medical School</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Igarashi, Hironaka</au><au>Ueki, Satoshi</au><au>Ohno, Ken</au><au>Ohkubo, Masaki</au><au>Suzuki, Yuji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Resonance Imaging of Neurotransmitter-Related Molecules</atitle><jtitle>Journal of Nippon Medical School</jtitle><addtitle>J Nippon Med Sch</addtitle><date>2017</date><risdate>2017</risdate><volume>84</volume><issue>4</issue><spage>160</spage><epage>164</epage><pages>160-164</pages><issn>1345-4676</issn><eissn>1347-3409</eissn><abstract>Molecular imaging implies the method capable of pictorially displaying distribution of target molecules and their relative concentration in space. In clinical medicine, where non-invasiveness is mandatory, diagnostic molecular imaging has been considered virtually identical to positron emission tomography (PET). However, there is another powerful, apparently underutilized molecular imaging, namely, proton magnetic resonance spectroscopic imaging (1H-MRSI). The technique can detect target molecules endogenous in brain in virtue of their own specific resonance frequencies (chemical shift) and can create quantitative images of each molecule. 1H-MRSI is conventionally utilized for imaging relatively easily detectable molecules such as N-acetyl-aspartate or lactate. More recently, however, the method is extended into imaging of more challenging molecules such as glutamate or γ-aminobutyric acid (GABA). In this small review, we summarize basic concept of 1H-MRSI and introduce an advanced technique, i.e. chemical exchange saturation transfer magnetic resonance imaging (CEST MRI), which made realistic glutamate imaging in vivo possible.</abstract><cop>Japan</cop><pub>The Medical Association of Nippon Medical School</pub><pmid>28978895</pmid><doi>10.1272/jnms.84.160</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1345-4676
ispartof Journal of Nippon Medical School, 2017/08/15, Vol.84(4), pp.160-164
issn 1345-4676
1347-3409
language eng
recordid cdi_proquest_miscellaneous_1947613678
source MEDLINE; J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese
subjects Aspartic Acid - analogs & derivatives
Brain
Diagnostic Imaging - methods
Diagnostic Imaging - trends
GABA
gamma-Aminobutyric Acid
glutamate
Glutamates
Humans
Lactates
Molecular Imaging - methods
Molecular Imaging - trends
MRI
MRS
Neurotransmitter Agents
Positron-Emission Tomography - methods
Positron-Emission Tomography - trends
Proton Magnetic Resonance Spectroscopy - methods
title Magnetic Resonance Imaging of Neurotransmitter-Related Molecules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T01%3A33%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Resonance%20Imaging%20of%20Neurotransmitter-Related%20Molecules&rft.jtitle=Journal%20of%20Nippon%20Medical%20School&rft.au=Igarashi,%20Hironaka&rft.date=2017&rft.volume=84&rft.issue=4&rft.spage=160&rft.epage=164&rft.pages=160-164&rft.issn=1345-4676&rft.eissn=1347-3409&rft_id=info:doi/10.1272/jnms.84.160&rft_dat=%3Cproquest_cross%3E1947613678%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1947613678&rft_id=info:pmid/28978895&rfr_iscdi=true