Magnetic Resonance Imaging of Neurotransmitter-Related Molecules
Molecular imaging implies the method capable of pictorially displaying distribution of target molecules and their relative concentration in space. In clinical medicine, where non-invasiveness is mandatory, diagnostic molecular imaging has been considered virtually identical to positron emission tomo...
Gespeichert in:
Veröffentlicht in: | Journal of Nippon Medical School 2017/08/15, Vol.84(4), pp.160-164 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 164 |
---|---|
container_issue | 4 |
container_start_page | 160 |
container_title | Journal of Nippon Medical School |
container_volume | 84 |
creator | Igarashi, Hironaka Ueki, Satoshi Ohno, Ken Ohkubo, Masaki Suzuki, Yuji |
description | Molecular imaging implies the method capable of pictorially displaying distribution of target molecules and their relative concentration in space. In clinical medicine, where non-invasiveness is mandatory, diagnostic molecular imaging has been considered virtually identical to positron emission tomography (PET). However, there is another powerful, apparently underutilized molecular imaging, namely, proton magnetic resonance spectroscopic imaging (1H-MRSI). The technique can detect target molecules endogenous in brain in virtue of their own specific resonance frequencies (chemical shift) and can create quantitative images of each molecule. 1H-MRSI is conventionally utilized for imaging relatively easily detectable molecules such as N-acetyl-aspartate or lactate. More recently, however, the method is extended into imaging of more challenging molecules such as glutamate or γ-aminobutyric acid (GABA). In this small review, we summarize basic concept of 1H-MRSI and introduce an advanced technique, i.e. chemical exchange saturation transfer magnetic resonance imaging (CEST MRI), which made realistic glutamate imaging in vivo possible. |
doi_str_mv | 10.1272/jnms.84.160 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1947613678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1947613678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-2e22fb2a8d7be866191387fde5618b2d14cbd3b033838f59b07238fb6822089f3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQQBdRrFZP3iVHQVL3K7ubiyjFj0KrUPS8bJJJTEk2dXdz8N-b2prTDMzjMTyErgieESrp3ca2fqb4jAh8hM4I4zJmHKfHf3sScyHFBJ17v8GYsSQRp2hCVSqVSpMz9LAylYVQ59EafGeNzSFatKaqbRV1ZfQGveuCM9a3dQjg4jU0JkARrboG8r4Bf4FOStN4uDzMKfp8fvqYv8bL95fF_HEZ54mkIaZAaZlRowqZgRKCpIQpWRaQCKIyWhCeZwXLhg8VU2WSZljSYcmEohSrtGRTdLP3bl333YMPuq19Dk1jLHS91yTlUhAmpBrQ2z2au857B6Xeuro17kcTrHfJ9C6ZVlwPyQb6-iDusxaKkf1vNAD3e2Djg6lgBIwbsjUwyvjBOB7yL-M0WPYLWNR94g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1947613678</pqid></control><display><type>article</type><title>Magnetic Resonance Imaging of Neurotransmitter-Related Molecules</title><source>MEDLINE</source><source>J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><creator>Igarashi, Hironaka ; Ueki, Satoshi ; Ohno, Ken ; Ohkubo, Masaki ; Suzuki, Yuji</creator><creatorcontrib>Igarashi, Hironaka ; Ueki, Satoshi ; Ohno, Ken ; Ohkubo, Masaki ; Suzuki, Yuji</creatorcontrib><description>Molecular imaging implies the method capable of pictorially displaying distribution of target molecules and their relative concentration in space. In clinical medicine, where non-invasiveness is mandatory, diagnostic molecular imaging has been considered virtually identical to positron emission tomography (PET). However, there is another powerful, apparently underutilized molecular imaging, namely, proton magnetic resonance spectroscopic imaging (1H-MRSI). The technique can detect target molecules endogenous in brain in virtue of their own specific resonance frequencies (chemical shift) and can create quantitative images of each molecule. 1H-MRSI is conventionally utilized for imaging relatively easily detectable molecules such as N-acetyl-aspartate or lactate. More recently, however, the method is extended into imaging of more challenging molecules such as glutamate or γ-aminobutyric acid (GABA). In this small review, we summarize basic concept of 1H-MRSI and introduce an advanced technique, i.e. chemical exchange saturation transfer magnetic resonance imaging (CEST MRI), which made realistic glutamate imaging in vivo possible.</description><identifier>ISSN: 1345-4676</identifier><identifier>EISSN: 1347-3409</identifier><identifier>DOI: 10.1272/jnms.84.160</identifier><identifier>PMID: 28978895</identifier><language>eng</language><publisher>Japan: The Medical Association of Nippon Medical School</publisher><subject>Aspartic Acid - analogs & derivatives ; Brain ; Diagnostic Imaging - methods ; Diagnostic Imaging - trends ; GABA ; gamma-Aminobutyric Acid ; glutamate ; Glutamates ; Humans ; Lactates ; Molecular Imaging - methods ; Molecular Imaging - trends ; MRI ; MRS ; Neurotransmitter Agents ; Positron-Emission Tomography - methods ; Positron-Emission Tomography - trends ; Proton Magnetic Resonance Spectroscopy - methods</subject><ispartof>Journal of Nippon Medical School, 2017/08/15, Vol.84(4), pp.160-164</ispartof><rights>2017 by the Medical Association of Nippon Medical School</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c572t-2e22fb2a8d7be866191387fde5618b2d14cbd3b033838f59b07238fb6822089f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,1887,4028,27932,27933,27934</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28978895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Igarashi, Hironaka</creatorcontrib><creatorcontrib>Ueki, Satoshi</creatorcontrib><creatorcontrib>Ohno, Ken</creatorcontrib><creatorcontrib>Ohkubo, Masaki</creatorcontrib><creatorcontrib>Suzuki, Yuji</creatorcontrib><title>Magnetic Resonance Imaging of Neurotransmitter-Related Molecules</title><title>Journal of Nippon Medical School</title><addtitle>J Nippon Med Sch</addtitle><description>Molecular imaging implies the method capable of pictorially displaying distribution of target molecules and their relative concentration in space. In clinical medicine, where non-invasiveness is mandatory, diagnostic molecular imaging has been considered virtually identical to positron emission tomography (PET). However, there is another powerful, apparently underutilized molecular imaging, namely, proton magnetic resonance spectroscopic imaging (1H-MRSI). The technique can detect target molecules endogenous in brain in virtue of their own specific resonance frequencies (chemical shift) and can create quantitative images of each molecule. 1H-MRSI is conventionally utilized for imaging relatively easily detectable molecules such as N-acetyl-aspartate or lactate. More recently, however, the method is extended into imaging of more challenging molecules such as glutamate or γ-aminobutyric acid (GABA). In this small review, we summarize basic concept of 1H-MRSI and introduce an advanced technique, i.e. chemical exchange saturation transfer magnetic resonance imaging (CEST MRI), which made realistic glutamate imaging in vivo possible.</description><subject>Aspartic Acid - analogs & derivatives</subject><subject>Brain</subject><subject>Diagnostic Imaging - methods</subject><subject>Diagnostic Imaging - trends</subject><subject>GABA</subject><subject>gamma-Aminobutyric Acid</subject><subject>glutamate</subject><subject>Glutamates</subject><subject>Humans</subject><subject>Lactates</subject><subject>Molecular Imaging - methods</subject><subject>Molecular Imaging - trends</subject><subject>MRI</subject><subject>MRS</subject><subject>Neurotransmitter Agents</subject><subject>Positron-Emission Tomography - methods</subject><subject>Positron-Emission Tomography - trends</subject><subject>Proton Magnetic Resonance Spectroscopy - methods</subject><issn>1345-4676</issn><issn>1347-3409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kE1Lw0AQQBdRrFZP3iVHQVL3K7ubiyjFj0KrUPS8bJJJTEk2dXdz8N-b2prTDMzjMTyErgieESrp3ca2fqb4jAh8hM4I4zJmHKfHf3sScyHFBJ17v8GYsSQRp2hCVSqVSpMz9LAylYVQ59EafGeNzSFatKaqbRV1ZfQGveuCM9a3dQjg4jU0JkARrboG8r4Bf4FOStN4uDzMKfp8fvqYv8bL95fF_HEZ54mkIaZAaZlRowqZgRKCpIQpWRaQCKIyWhCeZwXLhg8VU2WSZljSYcmEohSrtGRTdLP3bl333YMPuq19Dk1jLHS91yTlUhAmpBrQ2z2au857B6Xeuro17kcTrHfJ9C6ZVlwPyQb6-iDusxaKkf1vNAD3e2Djg6lgBIwbsjUwyvjBOB7yL-M0WPYLWNR94g</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Igarashi, Hironaka</creator><creator>Ueki, Satoshi</creator><creator>Ohno, Ken</creator><creator>Ohkubo, Masaki</creator><creator>Suzuki, Yuji</creator><general>The Medical Association of Nippon Medical School</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>2017</creationdate><title>Magnetic Resonance Imaging of Neurotransmitter-Related Molecules</title><author>Igarashi, Hironaka ; Ueki, Satoshi ; Ohno, Ken ; Ohkubo, Masaki ; Suzuki, Yuji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-2e22fb2a8d7be866191387fde5618b2d14cbd3b033838f59b07238fb6822089f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aspartic Acid - analogs & derivatives</topic><topic>Brain</topic><topic>Diagnostic Imaging - methods</topic><topic>Diagnostic Imaging - trends</topic><topic>GABA</topic><topic>gamma-Aminobutyric Acid</topic><topic>glutamate</topic><topic>Glutamates</topic><topic>Humans</topic><topic>Lactates</topic><topic>Molecular Imaging - methods</topic><topic>Molecular Imaging - trends</topic><topic>MRI</topic><topic>MRS</topic><topic>Neurotransmitter Agents</topic><topic>Positron-Emission Tomography - methods</topic><topic>Positron-Emission Tomography - trends</topic><topic>Proton Magnetic Resonance Spectroscopy - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Igarashi, Hironaka</creatorcontrib><creatorcontrib>Ueki, Satoshi</creatorcontrib><creatorcontrib>Ohno, Ken</creatorcontrib><creatorcontrib>Ohkubo, Masaki</creatorcontrib><creatorcontrib>Suzuki, Yuji</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Nippon Medical School</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Igarashi, Hironaka</au><au>Ueki, Satoshi</au><au>Ohno, Ken</au><au>Ohkubo, Masaki</au><au>Suzuki, Yuji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Resonance Imaging of Neurotransmitter-Related Molecules</atitle><jtitle>Journal of Nippon Medical School</jtitle><addtitle>J Nippon Med Sch</addtitle><date>2017</date><risdate>2017</risdate><volume>84</volume><issue>4</issue><spage>160</spage><epage>164</epage><pages>160-164</pages><issn>1345-4676</issn><eissn>1347-3409</eissn><abstract>Molecular imaging implies the method capable of pictorially displaying distribution of target molecules and their relative concentration in space. In clinical medicine, where non-invasiveness is mandatory, diagnostic molecular imaging has been considered virtually identical to positron emission tomography (PET). However, there is another powerful, apparently underutilized molecular imaging, namely, proton magnetic resonance spectroscopic imaging (1H-MRSI). The technique can detect target molecules endogenous in brain in virtue of their own specific resonance frequencies (chemical shift) and can create quantitative images of each molecule. 1H-MRSI is conventionally utilized for imaging relatively easily detectable molecules such as N-acetyl-aspartate or lactate. More recently, however, the method is extended into imaging of more challenging molecules such as glutamate or γ-aminobutyric acid (GABA). In this small review, we summarize basic concept of 1H-MRSI and introduce an advanced technique, i.e. chemical exchange saturation transfer magnetic resonance imaging (CEST MRI), which made realistic glutamate imaging in vivo possible.</abstract><cop>Japan</cop><pub>The Medical Association of Nippon Medical School</pub><pmid>28978895</pmid><doi>10.1272/jnms.84.160</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1345-4676 |
ispartof | Journal of Nippon Medical School, 2017/08/15, Vol.84(4), pp.160-164 |
issn | 1345-4676 1347-3409 |
language | eng |
recordid | cdi_proquest_miscellaneous_1947613678 |
source | MEDLINE; J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese |
subjects | Aspartic Acid - analogs & derivatives Brain Diagnostic Imaging - methods Diagnostic Imaging - trends GABA gamma-Aminobutyric Acid glutamate Glutamates Humans Lactates Molecular Imaging - methods Molecular Imaging - trends MRI MRS Neurotransmitter Agents Positron-Emission Tomography - methods Positron-Emission Tomography - trends Proton Magnetic Resonance Spectroscopy - methods |
title | Magnetic Resonance Imaging of Neurotransmitter-Related Molecules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T01%3A33%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Resonance%20Imaging%20of%20Neurotransmitter-Related%20Molecules&rft.jtitle=Journal%20of%20Nippon%20Medical%20School&rft.au=Igarashi,%20Hironaka&rft.date=2017&rft.volume=84&rft.issue=4&rft.spage=160&rft.epage=164&rft.pages=160-164&rft.issn=1345-4676&rft.eissn=1347-3409&rft_id=info:doi/10.1272/jnms.84.160&rft_dat=%3Cproquest_cross%3E1947613678%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1947613678&rft_id=info:pmid/28978895&rfr_iscdi=true |