Characterization of an experimental miniature bioreactor for cellular perturbation studies

A mini bioreactor (3.0 mL volume) has been developed and shown to be a versatile tool for rapidly screening and quantifying the response of organisms on environmental perturbations. The mini bioreactor is essentially a plug flow device transformed into a well‐mixed reactor by a recycle flow of the b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2006-12, Vol.95 (6), p.1032-1042
Hauptverfasser: Aboka, Fredrick O., Yang, Huiling, de Jonge, Lodewijk P., Kerste, Rob, van Winden, Wouter A., van Gulik, Walter M., Hoogendijk, Rob, Oudshoorn, Arthur, Heijnen, Joseph J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1042
container_issue 6
container_start_page 1032
container_title Biotechnology and bioengineering
container_volume 95
creator Aboka, Fredrick O.
Yang, Huiling
de Jonge, Lodewijk P.
Kerste, Rob
van Winden, Wouter A.
van Gulik, Walter M.
Hoogendijk, Rob
Oudshoorn, Arthur
Heijnen, Joseph J.
description A mini bioreactor (3.0 mL volume) has been developed and shown to be a versatile tool for rapidly screening and quantifying the response of organisms on environmental perturbations. The mini bioreactor is essentially a plug flow device transformed into a well‐mixed reactor by a recycle flow of the broth. The gas and liquid phases are separated by a silicone membrane. Dynamic mass transfer experiments were performed to determine the mass transfer capacities for oxygen and carbon dioxide. The mass transfer coefficients for oxygen and carbon dioxide were found to be 1.55 ± 0.17 × 10−5 m/s and 4.52 ± 0.60 × 10−6 m/s, respectively. Cultivation experiments with the 3.0 mL bioreactor show that (i) it can maintain biomass in the same physiological state as the 4.0 L lab scale bioreactor, (ii) reproducible perturbation experiments such as changing substrate uptake rate can be readily performed and the physiological response monitored quantitatively in terms of the O2 and CO2 uptake and production rates. © 2006 Wiley Periodicals, Inc.
doi_str_mv 10.1002/bit.21003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19466461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1178638031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4903-75f608d9d92abb1d3b78659fc0a0fe67bf69cac6c7c7bcbfdbccc103b83ed4c33</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOj4W_gEpgoKLatJ0kmap42MEURc-wE24SROMdtoxafHx683YUUFwEfL67jmHg9AmwfsE4-xAuXY_iye6gAYEC57iTOBFNMAYs5QORbaCVkN4ildeMLaMVggTnLOMDNDD6BE86NZ49wGta-qksQnUiXmbxqeJqVuokomrHbSdN4lyjTcRb3xi49KmqroKfBLh-K96hdB2pTNhHS1ZqILZmO9r6Pb05GY0Ti-uzs5HhxepzgWmKR9ahotSlCIDpUhJVQw5FFZjwNYwriwTGjTTXHOllS2V1ppgqgpqylxTuoZ2e92pb146E1o5cWGWDGrTdEESkTOWMxLB7T_gU9P5OmaTGaGxj4LjCO31kPZNCN5YOY09gH-XBMtZ2zK2Lb_ajuzWXLBTE1P-kvN6I7AzByBoqKyHWrvwyxWUEFbMTA967tVV5v1_R3l0fvNtnfYTLrTm7WcC_LNknPKhvL88k5ciOx7f5WN5TT8Bq6qnUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213762870</pqid></control><display><type>article</type><title>Characterization of an experimental miniature bioreactor for cellular perturbation studies</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Aboka, Fredrick O. ; Yang, Huiling ; de Jonge, Lodewijk P. ; Kerste, Rob ; van Winden, Wouter A. ; van Gulik, Walter M. ; Hoogendijk, Rob ; Oudshoorn, Arthur ; Heijnen, Joseph J.</creator><creatorcontrib>Aboka, Fredrick O. ; Yang, Huiling ; de Jonge, Lodewijk P. ; Kerste, Rob ; van Winden, Wouter A. ; van Gulik, Walter M. ; Hoogendijk, Rob ; Oudshoorn, Arthur ; Heijnen, Joseph J.</creatorcontrib><description>A mini bioreactor (3.0 mL volume) has been developed and shown to be a versatile tool for rapidly screening and quantifying the response of organisms on environmental perturbations. The mini bioreactor is essentially a plug flow device transformed into a well‐mixed reactor by a recycle flow of the broth. The gas and liquid phases are separated by a silicone membrane. Dynamic mass transfer experiments were performed to determine the mass transfer capacities for oxygen and carbon dioxide. The mass transfer coefficients for oxygen and carbon dioxide were found to be 1.55 ± 0.17 × 10−5 m/s and 4.52 ± 0.60 × 10−6 m/s, respectively. Cultivation experiments with the 3.0 mL bioreactor show that (i) it can maintain biomass in the same physiological state as the 4.0 L lab scale bioreactor, (ii) reproducible perturbation experiments such as changing substrate uptake rate can be readily performed and the physiological response monitored quantitatively in terms of the O2 and CO2 uptake and production rates. © 2006 Wiley Periodicals, Inc.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.21003</identifier><identifier>PMID: 16977621</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Biodegradation, Environmental ; Biological and medical sciences ; Biomass ; Biomedical Research ; Bioreactors ; Biotechnology ; Biotechnology - methods ; Carbon dioxide ; Carbon Dioxide - chemistry ; Fermentation ; Fundamental and applied biological sciences. Psychology ; Glucose - metabolism ; Industrial Microbiology - methods ; mass transfer ; Membrane reactors ; mini bioreactor ; Miniaturization ; Models, Statistical ; Oxygen ; Oxygen - chemistry ; perturbation ; quantitative response in O2 and CO2 ; RTD ; Saccharomyces cerevisiae - metabolism ; screening ; Silicones - chemistry ; Studies ; Time Factors</subject><ispartof>Biotechnology and bioengineering, 2006-12, Vol.95 (6), p.1032-1042</ispartof><rights>Copyright © 2006 Wiley Periodicals, Inc.</rights><rights>2007 INIST-CNRS</rights><rights>Copyright 2006 Wiley Periodicals, Inc.</rights><rights>Copyright John Wiley and Sons, Limited Dec 20, 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4903-75f608d9d92abb1d3b78659fc0a0fe67bf69cac6c7c7bcbfdbccc103b83ed4c33</citedby><cites>FETCH-LOGICAL-c4903-75f608d9d92abb1d3b78659fc0a0fe67bf69cac6c7c7bcbfdbccc103b83ed4c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.21003$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.21003$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18311680$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16977621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aboka, Fredrick O.</creatorcontrib><creatorcontrib>Yang, Huiling</creatorcontrib><creatorcontrib>de Jonge, Lodewijk P.</creatorcontrib><creatorcontrib>Kerste, Rob</creatorcontrib><creatorcontrib>van Winden, Wouter A.</creatorcontrib><creatorcontrib>van Gulik, Walter M.</creatorcontrib><creatorcontrib>Hoogendijk, Rob</creatorcontrib><creatorcontrib>Oudshoorn, Arthur</creatorcontrib><creatorcontrib>Heijnen, Joseph J.</creatorcontrib><title>Characterization of an experimental miniature bioreactor for cellular perturbation studies</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>A mini bioreactor (3.0 mL volume) has been developed and shown to be a versatile tool for rapidly screening and quantifying the response of organisms on environmental perturbations. The mini bioreactor is essentially a plug flow device transformed into a well‐mixed reactor by a recycle flow of the broth. The gas and liquid phases are separated by a silicone membrane. Dynamic mass transfer experiments were performed to determine the mass transfer capacities for oxygen and carbon dioxide. The mass transfer coefficients for oxygen and carbon dioxide were found to be 1.55 ± 0.17 × 10−5 m/s and 4.52 ± 0.60 × 10−6 m/s, respectively. Cultivation experiments with the 3.0 mL bioreactor show that (i) it can maintain biomass in the same physiological state as the 4.0 L lab scale bioreactor, (ii) reproducible perturbation experiments such as changing substrate uptake rate can be readily performed and the physiological response monitored quantitatively in terms of the O2 and CO2 uptake and production rates. © 2006 Wiley Periodicals, Inc.</description><subject>Biodegradation, Environmental</subject><subject>Biological and medical sciences</subject><subject>Biomass</subject><subject>Biomedical Research</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Biotechnology - methods</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - chemistry</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glucose - metabolism</subject><subject>Industrial Microbiology - methods</subject><subject>mass transfer</subject><subject>Membrane reactors</subject><subject>mini bioreactor</subject><subject>Miniaturization</subject><subject>Models, Statistical</subject><subject>Oxygen</subject><subject>Oxygen - chemistry</subject><subject>perturbation</subject><subject>quantitative response in O2 and CO2</subject><subject>RTD</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>screening</subject><subject>Silicones - chemistry</subject><subject>Studies</subject><subject>Time Factors</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtLxDAUhYMoOj4W_gEpgoKLatJ0kmap42MEURc-wE24SROMdtoxafHx683YUUFwEfL67jmHg9AmwfsE4-xAuXY_iye6gAYEC57iTOBFNMAYs5QORbaCVkN4ildeMLaMVggTnLOMDNDD6BE86NZ49wGta-qksQnUiXmbxqeJqVuokomrHbSdN4lyjTcRb3xi49KmqroKfBLh-K96hdB2pTNhHS1ZqILZmO9r6Pb05GY0Ti-uzs5HhxepzgWmKR9ahotSlCIDpUhJVQw5FFZjwNYwriwTGjTTXHOllS2V1ppgqgpqylxTuoZ2e92pb146E1o5cWGWDGrTdEESkTOWMxLB7T_gU9P5OmaTGaGxj4LjCO31kPZNCN5YOY09gH-XBMtZ2zK2Lb_ajuzWXLBTE1P-kvN6I7AzByBoqKyHWrvwyxWUEFbMTA967tVV5v1_R3l0fvNtnfYTLrTm7WcC_LNknPKhvL88k5ciOx7f5WN5TT8Bq6qnUQ</recordid><startdate>20061220</startdate><enddate>20061220</enddate><creator>Aboka, Fredrick O.</creator><creator>Yang, Huiling</creator><creator>de Jonge, Lodewijk P.</creator><creator>Kerste, Rob</creator><creator>van Winden, Wouter A.</creator><creator>van Gulik, Walter M.</creator><creator>Hoogendijk, Rob</creator><creator>Oudshoorn, Arthur</creator><creator>Heijnen, Joseph J.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20061220</creationdate><title>Characterization of an experimental miniature bioreactor for cellular perturbation studies</title><author>Aboka, Fredrick O. ; Yang, Huiling ; de Jonge, Lodewijk P. ; Kerste, Rob ; van Winden, Wouter A. ; van Gulik, Walter M. ; Hoogendijk, Rob ; Oudshoorn, Arthur ; Heijnen, Joseph J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4903-75f608d9d92abb1d3b78659fc0a0fe67bf69cac6c7c7bcbfdbccc103b83ed4c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Biodegradation, Environmental</topic><topic>Biological and medical sciences</topic><topic>Biomass</topic><topic>Biomedical Research</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Biotechnology - methods</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - chemistry</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glucose - metabolism</topic><topic>Industrial Microbiology - methods</topic><topic>mass transfer</topic><topic>Membrane reactors</topic><topic>mini bioreactor</topic><topic>Miniaturization</topic><topic>Models, Statistical</topic><topic>Oxygen</topic><topic>Oxygen - chemistry</topic><topic>perturbation</topic><topic>quantitative response in O2 and CO2</topic><topic>RTD</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>screening</topic><topic>Silicones - chemistry</topic><topic>Studies</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aboka, Fredrick O.</creatorcontrib><creatorcontrib>Yang, Huiling</creatorcontrib><creatorcontrib>de Jonge, Lodewijk P.</creatorcontrib><creatorcontrib>Kerste, Rob</creatorcontrib><creatorcontrib>van Winden, Wouter A.</creatorcontrib><creatorcontrib>van Gulik, Walter M.</creatorcontrib><creatorcontrib>Hoogendijk, Rob</creatorcontrib><creatorcontrib>Oudshoorn, Arthur</creatorcontrib><creatorcontrib>Heijnen, Joseph J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aboka, Fredrick O.</au><au>Yang, Huiling</au><au>de Jonge, Lodewijk P.</au><au>Kerste, Rob</au><au>van Winden, Wouter A.</au><au>van Gulik, Walter M.</au><au>Hoogendijk, Rob</au><au>Oudshoorn, Arthur</au><au>Heijnen, Joseph J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of an experimental miniature bioreactor for cellular perturbation studies</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2006-12-20</date><risdate>2006</risdate><volume>95</volume><issue>6</issue><spage>1032</spage><epage>1042</epage><pages>1032-1042</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>A mini bioreactor (3.0 mL volume) has been developed and shown to be a versatile tool for rapidly screening and quantifying the response of organisms on environmental perturbations. The mini bioreactor is essentially a plug flow device transformed into a well‐mixed reactor by a recycle flow of the broth. The gas and liquid phases are separated by a silicone membrane. Dynamic mass transfer experiments were performed to determine the mass transfer capacities for oxygen and carbon dioxide. The mass transfer coefficients for oxygen and carbon dioxide were found to be 1.55 ± 0.17 × 10−5 m/s and 4.52 ± 0.60 × 10−6 m/s, respectively. Cultivation experiments with the 3.0 mL bioreactor show that (i) it can maintain biomass in the same physiological state as the 4.0 L lab scale bioreactor, (ii) reproducible perturbation experiments such as changing substrate uptake rate can be readily performed and the physiological response monitored quantitatively in terms of the O2 and CO2 uptake and production rates. © 2006 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>16977621</pmid><doi>10.1002/bit.21003</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2006-12, Vol.95 (6), p.1032-1042
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_19466461
source MEDLINE; Wiley Online Library All Journals
subjects Biodegradation, Environmental
Biological and medical sciences
Biomass
Biomedical Research
Bioreactors
Biotechnology
Biotechnology - methods
Carbon dioxide
Carbon Dioxide - chemistry
Fermentation
Fundamental and applied biological sciences. Psychology
Glucose - metabolism
Industrial Microbiology - methods
mass transfer
Membrane reactors
mini bioreactor
Miniaturization
Models, Statistical
Oxygen
Oxygen - chemistry
perturbation
quantitative response in O2 and CO2
RTD
Saccharomyces cerevisiae - metabolism
screening
Silicones - chemistry
Studies
Time Factors
title Characterization of an experimental miniature bioreactor for cellular perturbation studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A52%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20an%20experimental%20miniature%20bioreactor%20for%20cellular%20perturbation%20studies&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Aboka,%20Fredrick%20O.&rft.date=2006-12-20&rft.volume=95&rft.issue=6&rft.spage=1032&rft.epage=1042&rft.pages=1032-1042&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.21003&rft_dat=%3Cproquest_cross%3E1178638031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213762870&rft_id=info:pmid/16977621&rfr_iscdi=true