Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images

Computer vision may aid in melanoma detection. We sought to compare melanoma diagnostic accuracy of computer algorithms to dermatologists using dermoscopic images. We conducted a cross-sectional study using 100 randomly selected dermoscopic images (50 melanomas, 44 nevi, and 6 lentigines) from an in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Academy of Dermatology 2018-02, Vol.78 (2), p.270-277.e1
Hauptverfasser: Marchetti, Michael A., Codella, Noel C.F., Dusza, Stephen W., Gutman, David A., Helba, Brian, Kalloo, Aadi, Mishra, Nabin, Carrera, Cristina, Celebi, M. Emre, DeFazio, Jennifer L., Jaimes, Natalia, Marghoob, Ashfaq A., Quigley, Elizabeth, Scope, Alon, Yélamos, Oriol, Halpern, Allan C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 277.e1
container_issue 2
container_start_page 270
container_title Journal of the American Academy of Dermatology
container_volume 78
creator Marchetti, Michael A.
Codella, Noel C.F.
Dusza, Stephen W.
Gutman, David A.
Helba, Brian
Kalloo, Aadi
Mishra, Nabin
Carrera, Cristina
Celebi, M. Emre
DeFazio, Jennifer L.
Jaimes, Natalia
Marghoob, Ashfaq A.
Quigley, Elizabeth
Scope, Alon
Yélamos, Oriol
Halpern, Allan C.
description Computer vision may aid in melanoma detection. We sought to compare melanoma diagnostic accuracy of computer algorithms to dermatologists using dermoscopic images. We conducted a cross-sectional study using 100 randomly selected dermoscopic images (50 melanomas, 44 nevi, and 6 lentigines) from an international computer vision melanoma challenge dataset (n = 379), along with individual algorithm results from 25 teams. We used 5 methods (nonlearned and machine learning) to combine individual automated predictions into “fusion” algorithms. In a companion study, 8 dermatologists classified the lesions in the 100 images as either benign or malignant. The average sensitivity and specificity of dermatologists in classification was 82% and 59%. At 82% sensitivity, dermatologist specificity was similar to the top challenge algorithm (59% vs. 62%, P = .68) but lower than the best-performing fusion algorithm (59% vs. 76%, P = .02). Receiver operating characteristic area of the top fusion algorithm was greater than the mean receiver operating characteristic area of dermatologists (0.86 vs. 0.71, P = .001). The dataset lacked the full spectrum of skin lesions encountered in clinical practice, particularly banal lesions. Readers and algorithms were not provided clinical data (eg, age or lesion history/symptoms). Results obtained using our study design cannot be extrapolated to clinical practice. Deep learning computer vision systems classified melanoma dermoscopy images with accuracy that exceeded some but not all dermatologists.
doi_str_mv 10.1016/j.jaad.2017.08.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1946435969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0190962217322028</els_id><sourcerecordid>1946435969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-8870f425531cd8ddf904405158dc4af0437242b0d54b66a6604487f5f5d4dad03</originalsourceid><addsrcrecordid>eNp9Ucmu0zAUtRCIVx78AAvkJZsEJ3EcB7GBiqHSk5AY1pbrIXWJ7WI7SP1qfoHb4bFgwcryPcMdDkLPG1I3pGGv9vVeSl23pBlqwmsoPUCrhoxDxQY-PEQr0oykGlnb3qAnOe8JISPthsfopuUjGznrVuj3F5OXuWQcLS47g8GM4U0oJgVZXAxyxl9_uIA3Xk4uTHgd51luYzqD_xKP_hCzWzwG6J2L3minoH6vVTs5zyZM5jXY-INMLgPx2lgqtSSpjqe_AnQBZyznKSZXdj7jErE2ycsS5zi5DBPbmM5K7eQUoO95B29mGaKX2Kboz4qYVTw4hR1MYfJT9MjKOZtn1_cWff_w_tv6U3X3-eNm_fauUpSxUnE-EEvbvu8apbnWdiSUkr7puVZUWgJnbGm7JbqnW8YkYwDzwfa211RLTbpb9PLie0jx52JyEd5lZeB4wcQli2akjHY9xADU9kJVKeacjBWHBMOmo2iIOAUt9uIUtDgFLQgXUALRi6v_soU7_5XcJwuENxeCgS1_OZNEVs4EBZkko4rQ0f3P_w8Ygr-d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1946435969</pqid></control><display><type>article</type><title>Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Marchetti, Michael A. ; Codella, Noel C.F. ; Dusza, Stephen W. ; Gutman, David A. ; Helba, Brian ; Kalloo, Aadi ; Mishra, Nabin ; Carrera, Cristina ; Celebi, M. Emre ; DeFazio, Jennifer L. ; Jaimes, Natalia ; Marghoob, Ashfaq A. ; Quigley, Elizabeth ; Scope, Alon ; Yélamos, Oriol ; Halpern, Allan C.</creator><creatorcontrib>Marchetti, Michael A. ; Codella, Noel C.F. ; Dusza, Stephen W. ; Gutman, David A. ; Helba, Brian ; Kalloo, Aadi ; Mishra, Nabin ; Carrera, Cristina ; Celebi, M. Emre ; DeFazio, Jennifer L. ; Jaimes, Natalia ; Marghoob, Ashfaq A. ; Quigley, Elizabeth ; Scope, Alon ; Yélamos, Oriol ; Halpern, Allan C. ; International Skin Imaging Collaboration</creatorcontrib><description>Computer vision may aid in melanoma detection. We sought to compare melanoma diagnostic accuracy of computer algorithms to dermatologists using dermoscopic images. We conducted a cross-sectional study using 100 randomly selected dermoscopic images (50 melanomas, 44 nevi, and 6 lentigines) from an international computer vision melanoma challenge dataset (n = 379), along with individual algorithm results from 25 teams. We used 5 methods (nonlearned and machine learning) to combine individual automated predictions into “fusion” algorithms. In a companion study, 8 dermatologists classified the lesions in the 100 images as either benign or malignant. The average sensitivity and specificity of dermatologists in classification was 82% and 59%. At 82% sensitivity, dermatologist specificity was similar to the top challenge algorithm (59% vs. 62%, P = .68) but lower than the best-performing fusion algorithm (59% vs. 76%, P = .02). Receiver operating characteristic area of the top fusion algorithm was greater than the mean receiver operating characteristic area of dermatologists (0.86 vs. 0.71, P = .001). The dataset lacked the full spectrum of skin lesions encountered in clinical practice, particularly banal lesions. Readers and algorithms were not provided clinical data (eg, age or lesion history/symptoms). Results obtained using our study design cannot be extrapolated to clinical practice. Deep learning computer vision systems classified melanoma dermoscopy images with accuracy that exceeded some but not all dermatologists.</description><identifier>ISSN: 0190-9622</identifier><identifier>EISSN: 1097-6787</identifier><identifier>DOI: 10.1016/j.jaad.2017.08.016</identifier><identifier>PMID: 28969863</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; computer algorithm ; computer vision ; Congresses as Topic ; Cross-Sectional Studies ; dermatologist ; Dermatologists ; Dermoscopy ; Diagnosis, Computer-Assisted ; Humans ; International Skin Imaging Collaboration ; International Symposium on Biomedical Imaging ; Lentigo - diagnostic imaging ; Machine Learning ; melanoma ; Melanoma - diagnosis ; Melanoma - pathology ; Nevus - diagnostic imaging ; reader study ; ROC Curve ; skin cancer ; Skin Neoplasms - diagnostic imaging ; Skin Neoplasms - pathology</subject><ispartof>Journal of the American Academy of Dermatology, 2018-02, Vol.78 (2), p.270-277.e1</ispartof><rights>2017 American Academy of Dermatology, Inc.</rights><rights>Copyright © 2017 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-8870f425531cd8ddf904405158dc4af0437242b0d54b66a6604487f5f5d4dad03</citedby><cites>FETCH-LOGICAL-c466t-8870f425531cd8ddf904405158dc4af0437242b0d54b66a6604487f5f5d4dad03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0190962217322028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28969863$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marchetti, Michael A.</creatorcontrib><creatorcontrib>Codella, Noel C.F.</creatorcontrib><creatorcontrib>Dusza, Stephen W.</creatorcontrib><creatorcontrib>Gutman, David A.</creatorcontrib><creatorcontrib>Helba, Brian</creatorcontrib><creatorcontrib>Kalloo, Aadi</creatorcontrib><creatorcontrib>Mishra, Nabin</creatorcontrib><creatorcontrib>Carrera, Cristina</creatorcontrib><creatorcontrib>Celebi, M. Emre</creatorcontrib><creatorcontrib>DeFazio, Jennifer L.</creatorcontrib><creatorcontrib>Jaimes, Natalia</creatorcontrib><creatorcontrib>Marghoob, Ashfaq A.</creatorcontrib><creatorcontrib>Quigley, Elizabeth</creatorcontrib><creatorcontrib>Scope, Alon</creatorcontrib><creatorcontrib>Yélamos, Oriol</creatorcontrib><creatorcontrib>Halpern, Allan C.</creatorcontrib><creatorcontrib>International Skin Imaging Collaboration</creatorcontrib><title>Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images</title><title>Journal of the American Academy of Dermatology</title><addtitle>J Am Acad Dermatol</addtitle><description>Computer vision may aid in melanoma detection. We sought to compare melanoma diagnostic accuracy of computer algorithms to dermatologists using dermoscopic images. We conducted a cross-sectional study using 100 randomly selected dermoscopic images (50 melanomas, 44 nevi, and 6 lentigines) from an international computer vision melanoma challenge dataset (n = 379), along with individual algorithm results from 25 teams. We used 5 methods (nonlearned and machine learning) to combine individual automated predictions into “fusion” algorithms. In a companion study, 8 dermatologists classified the lesions in the 100 images as either benign or malignant. The average sensitivity and specificity of dermatologists in classification was 82% and 59%. At 82% sensitivity, dermatologist specificity was similar to the top challenge algorithm (59% vs. 62%, P = .68) but lower than the best-performing fusion algorithm (59% vs. 76%, P = .02). Receiver operating characteristic area of the top fusion algorithm was greater than the mean receiver operating characteristic area of dermatologists (0.86 vs. 0.71, P = .001). The dataset lacked the full spectrum of skin lesions encountered in clinical practice, particularly banal lesions. Readers and algorithms were not provided clinical data (eg, age or lesion history/symptoms). Results obtained using our study design cannot be extrapolated to clinical practice. Deep learning computer vision systems classified melanoma dermoscopy images with accuracy that exceeded some but not all dermatologists.</description><subject>Algorithms</subject><subject>computer algorithm</subject><subject>computer vision</subject><subject>Congresses as Topic</subject><subject>Cross-Sectional Studies</subject><subject>dermatologist</subject><subject>Dermatologists</subject><subject>Dermoscopy</subject><subject>Diagnosis, Computer-Assisted</subject><subject>Humans</subject><subject>International Skin Imaging Collaboration</subject><subject>International Symposium on Biomedical Imaging</subject><subject>Lentigo - diagnostic imaging</subject><subject>Machine Learning</subject><subject>melanoma</subject><subject>Melanoma - diagnosis</subject><subject>Melanoma - pathology</subject><subject>Nevus - diagnostic imaging</subject><subject>reader study</subject><subject>ROC Curve</subject><subject>skin cancer</subject><subject>Skin Neoplasms - diagnostic imaging</subject><subject>Skin Neoplasms - pathology</subject><issn>0190-9622</issn><issn>1097-6787</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9Ucmu0zAUtRCIVx78AAvkJZsEJ3EcB7GBiqHSk5AY1pbrIXWJ7WI7SP1qfoHb4bFgwcryPcMdDkLPG1I3pGGv9vVeSl23pBlqwmsoPUCrhoxDxQY-PEQr0oykGlnb3qAnOe8JISPthsfopuUjGznrVuj3F5OXuWQcLS47g8GM4U0oJgVZXAxyxl9_uIA3Xk4uTHgd51luYzqD_xKP_hCzWzwG6J2L3minoH6vVTs5zyZM5jXY-INMLgPx2lgqtSSpjqe_AnQBZyznKSZXdj7jErE2ycsS5zi5DBPbmM5K7eQUoO95B29mGaKX2Kboz4qYVTw4hR1MYfJT9MjKOZtn1_cWff_w_tv6U3X3-eNm_fauUpSxUnE-EEvbvu8apbnWdiSUkr7puVZUWgJnbGm7JbqnW8YkYwDzwfa211RLTbpb9PLie0jx52JyEd5lZeB4wcQli2akjHY9xADU9kJVKeacjBWHBMOmo2iIOAUt9uIUtDgFLQgXUALRi6v_soU7_5XcJwuENxeCgS1_OZNEVs4EBZkko4rQ0f3P_w8Ygr-d</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Marchetti, Michael A.</creator><creator>Codella, Noel C.F.</creator><creator>Dusza, Stephen W.</creator><creator>Gutman, David A.</creator><creator>Helba, Brian</creator><creator>Kalloo, Aadi</creator><creator>Mishra, Nabin</creator><creator>Carrera, Cristina</creator><creator>Celebi, M. Emre</creator><creator>DeFazio, Jennifer L.</creator><creator>Jaimes, Natalia</creator><creator>Marghoob, Ashfaq A.</creator><creator>Quigley, Elizabeth</creator><creator>Scope, Alon</creator><creator>Yélamos, Oriol</creator><creator>Halpern, Allan C.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201802</creationdate><title>Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images</title><author>Marchetti, Michael A. ; Codella, Noel C.F. ; Dusza, Stephen W. ; Gutman, David A. ; Helba, Brian ; Kalloo, Aadi ; Mishra, Nabin ; Carrera, Cristina ; Celebi, M. Emre ; DeFazio, Jennifer L. ; Jaimes, Natalia ; Marghoob, Ashfaq A. ; Quigley, Elizabeth ; Scope, Alon ; Yélamos, Oriol ; Halpern, Allan C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-8870f425531cd8ddf904405158dc4af0437242b0d54b66a6604487f5f5d4dad03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>computer algorithm</topic><topic>computer vision</topic><topic>Congresses as Topic</topic><topic>Cross-Sectional Studies</topic><topic>dermatologist</topic><topic>Dermatologists</topic><topic>Dermoscopy</topic><topic>Diagnosis, Computer-Assisted</topic><topic>Humans</topic><topic>International Skin Imaging Collaboration</topic><topic>International Symposium on Biomedical Imaging</topic><topic>Lentigo - diagnostic imaging</topic><topic>Machine Learning</topic><topic>melanoma</topic><topic>Melanoma - diagnosis</topic><topic>Melanoma - pathology</topic><topic>Nevus - diagnostic imaging</topic><topic>reader study</topic><topic>ROC Curve</topic><topic>skin cancer</topic><topic>Skin Neoplasms - diagnostic imaging</topic><topic>Skin Neoplasms - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marchetti, Michael A.</creatorcontrib><creatorcontrib>Codella, Noel C.F.</creatorcontrib><creatorcontrib>Dusza, Stephen W.</creatorcontrib><creatorcontrib>Gutman, David A.</creatorcontrib><creatorcontrib>Helba, Brian</creatorcontrib><creatorcontrib>Kalloo, Aadi</creatorcontrib><creatorcontrib>Mishra, Nabin</creatorcontrib><creatorcontrib>Carrera, Cristina</creatorcontrib><creatorcontrib>Celebi, M. Emre</creatorcontrib><creatorcontrib>DeFazio, Jennifer L.</creatorcontrib><creatorcontrib>Jaimes, Natalia</creatorcontrib><creatorcontrib>Marghoob, Ashfaq A.</creatorcontrib><creatorcontrib>Quigley, Elizabeth</creatorcontrib><creatorcontrib>Scope, Alon</creatorcontrib><creatorcontrib>Yélamos, Oriol</creatorcontrib><creatorcontrib>Halpern, Allan C.</creatorcontrib><creatorcontrib>International Skin Imaging Collaboration</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Academy of Dermatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marchetti, Michael A.</au><au>Codella, Noel C.F.</au><au>Dusza, Stephen W.</au><au>Gutman, David A.</au><au>Helba, Brian</au><au>Kalloo, Aadi</au><au>Mishra, Nabin</au><au>Carrera, Cristina</au><au>Celebi, M. Emre</au><au>DeFazio, Jennifer L.</au><au>Jaimes, Natalia</au><au>Marghoob, Ashfaq A.</au><au>Quigley, Elizabeth</au><au>Scope, Alon</au><au>Yélamos, Oriol</au><au>Halpern, Allan C.</au><aucorp>International Skin Imaging Collaboration</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images</atitle><jtitle>Journal of the American Academy of Dermatology</jtitle><addtitle>J Am Acad Dermatol</addtitle><date>2018-02</date><risdate>2018</risdate><volume>78</volume><issue>2</issue><spage>270</spage><epage>277.e1</epage><pages>270-277.e1</pages><issn>0190-9622</issn><eissn>1097-6787</eissn><abstract>Computer vision may aid in melanoma detection. We sought to compare melanoma diagnostic accuracy of computer algorithms to dermatologists using dermoscopic images. We conducted a cross-sectional study using 100 randomly selected dermoscopic images (50 melanomas, 44 nevi, and 6 lentigines) from an international computer vision melanoma challenge dataset (n = 379), along with individual algorithm results from 25 teams. We used 5 methods (nonlearned and machine learning) to combine individual automated predictions into “fusion” algorithms. In a companion study, 8 dermatologists classified the lesions in the 100 images as either benign or malignant. The average sensitivity and specificity of dermatologists in classification was 82% and 59%. At 82% sensitivity, dermatologist specificity was similar to the top challenge algorithm (59% vs. 62%, P = .68) but lower than the best-performing fusion algorithm (59% vs. 76%, P = .02). Receiver operating characteristic area of the top fusion algorithm was greater than the mean receiver operating characteristic area of dermatologists (0.86 vs. 0.71, P = .001). The dataset lacked the full spectrum of skin lesions encountered in clinical practice, particularly banal lesions. Readers and algorithms were not provided clinical data (eg, age or lesion history/symptoms). Results obtained using our study design cannot be extrapolated to clinical practice. Deep learning computer vision systems classified melanoma dermoscopy images with accuracy that exceeded some but not all dermatologists.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28969863</pmid><doi>10.1016/j.jaad.2017.08.016</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0190-9622
ispartof Journal of the American Academy of Dermatology, 2018-02, Vol.78 (2), p.270-277.e1
issn 0190-9622
1097-6787
language eng
recordid cdi_proquest_miscellaneous_1946435969
source MEDLINE; Elsevier ScienceDirect Journals
subjects Algorithms
computer algorithm
computer vision
Congresses as Topic
Cross-Sectional Studies
dermatologist
Dermatologists
Dermoscopy
Diagnosis, Computer-Assisted
Humans
International Skin Imaging Collaboration
International Symposium on Biomedical Imaging
Lentigo - diagnostic imaging
Machine Learning
melanoma
Melanoma - diagnosis
Melanoma - pathology
Nevus - diagnostic imaging
reader study
ROC Curve
skin cancer
Skin Neoplasms - diagnostic imaging
Skin Neoplasms - pathology
title Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A13%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Results%20of%20the%202016%20International%20Skin%20Imaging%20Collaboration%20International%20Symposium%20on%20Biomedical%20Imaging%20challenge:%20Comparison%20of%20the%20accuracy%20of%20computer%20algorithms%20to%20dermatologists%20for%20the%20diagnosis%20of%20melanoma%20from%20dermoscopic%20images&rft.jtitle=Journal%20of%20the%20American%20Academy%20of%20Dermatology&rft.au=Marchetti,%20Michael%20A.&rft.aucorp=International%20Skin%20Imaging%20Collaboration&rft.date=2018-02&rft.volume=78&rft.issue=2&rft.spage=270&rft.epage=277.e1&rft.pages=270-277.e1&rft.issn=0190-9622&rft.eissn=1097-6787&rft_id=info:doi/10.1016/j.jaad.2017.08.016&rft_dat=%3Cproquest_cross%3E1946435969%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1946435969&rft_id=info:pmid/28969863&rft_els_id=S0190962217322028&rfr_iscdi=true