Correlations between Cassini VIMS spectra and RADAR SAR images: Implications for Titan's surface composition and the character of the Huygens Probe Landing Site
Titan's vast equatorial fields of RADAR-dark longitudinal dunes seen in Cassini RADAR synthetic aperture images correlate with one of two dark surface units discriminated as “brown” and “blue” in Visible and Infrared Mapping Spectrometer (VIMS) color composites of short-wavelength infrared spec...
Gespeichert in:
Veröffentlicht in: | Planetary and space science 2007-11, Vol.55 (13), p.2025-2036 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2036 |
---|---|
container_issue | 13 |
container_start_page | 2025 |
container_title | Planetary and space science |
container_volume | 55 |
creator | Soderblom, Laurence A. Kirk, Randolph L. Lunine, Jonathan I. Anderson, Jeffrey A. Baines, Kevin H. Barnes, Jason W. Barrett, Janet M. Brown, Robert H. Buratti, Bonnie J. Clark, Roger N. Cruikshank, Dale P. Elachi, Charles Janssen, Michael A. Jaumann, Ralf Karkoschka, Erich Mouélic, Stéphane Le Lopes, Rosaly M. Lorenz, Ralph D. McCord, Thomas B. Nicholson, Philip D. Radebaugh, Jani Rizk, Bashar Sotin, Christophe Stofan, Ellen R. Sucharski, Tracie L. Tomasko, Martin G. Wall, Stephen D. |
description | Titan's vast equatorial fields of RADAR-dark longitudinal dunes seen in Cassini RADAR synthetic aperture images correlate with one of two dark surface units discriminated as “brown” and “blue” in Visible and Infrared Mapping Spectrometer (VIMS) color composites of short-wavelength infrared spectral cubes (RGB as 2.0, 1.6, 1.3
μm). In such composites bluer materials exhibit higher reflectance at 1.3
μm and lower at 1.6 and 2.0
μm. The dark brown unit is highly correlated with the RADAR-dark dunes. The dark brown unit shows less evidence of water ice suggesting that the saltating grains of the dunes are largely composed of hydrocarbons and/or nitriles. In general, the bright units also show less evidence of absorption due to water ice and are inferred to consist of deposits of bright fine precipitating tholin aerosol dust. Some set of chemical/mechanical processes may be converting the bright fine-grained aerosol deposits into the dark saltating hydrocarbon and/or nitrile grains. Alternatively the dark dune materials may be derived from a different type of air aerosol photochemical product than are the bright materials. In our model, both the bright aerosol and dark hydrocarbon dune deposits mantle the VIMS dark blue water ice-rich substrate. We postulate that the bright mantles are effectively invisible (transparent) in RADAR synthetic aperture radar (SAR) images leading to lack of correlation in the RADAR images with optically bright mantling units. RADAR images mostly show only dark dunes and the water ice substrate that varies in roughness, fracturing, and porosity. If the rate of deposition of bright aerosol is 0.001–0.01
μm/yr, the surface would be coated (to optical instruments) in hundreds-to-thousands of years unless cleansing processes are active. The dark dunes must be mobile on this very short timescale to prevent the accumulation of bright coatings. Huygens landed in a region of the VIMS bright and dark blue materials and about 30
km south of the nearest occurrence of dunes visible in the RADAR SAR images. Fluvial/pluvial processes, every few centuries or millennia, must be cleansing the dark floors of the incised channels and scouring the dark plains at the Huygens landing site both imaged by Descent Imager/Spectral Radiometer (DISR). |
doi_str_mv | 10.1016/j.pss.2007.04.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19462147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032063307001304</els_id><sourcerecordid>19462147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-7d9e80b8e49f7a7381256f2e2474cd6017a9a00014a42c9d702024e46778ebd03</originalsourceid><addsrcrecordid>eNp9UcFuEzEQtRCVCIUP4OYTnHY79rrrXThFAdpIQUVN4Wo53tnU0Wa9eBxQ_6afWqfpmcNopNF7b_TeY-yDgFKAqC925URUSgBdgipBqFdsJhpdFZfQNK_ZDKCSBdRV9Ya9JdoBQF1LPWOPixAjDjb5MBLfYPqHOPKFJfKj57-XP9acJnQpWm7Hjt_Ov85v-TqP39st0me-3E-Ddy_8PkR-55MdPxGnQ-ytQ-7Cfgrkj4BniXSfb_c2Wpcw8tA_H64PD1vMAj9j2CBfZZwft3ztE75jZ70dCN-_7HP26_u3u8V1sbq5Wi7mq8JVskmF7lpsYNOganttddUIeVn3EqXSynU1CG1bm10LZZV0badBglSoaq0b3HRQnbOPJ90phj8HpGT2nhwOgx0xHMiIVtVSKJ2B4gR0MRBF7M0UcxjxwQgwxy7MzuQuzLELA8rkl5nz5cTB7OCvx2jIeRwddj7mcE0X_H_YTyNvkrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19462147</pqid></control><display><type>article</type><title>Correlations between Cassini VIMS spectra and RADAR SAR images: Implications for Titan's surface composition and the character of the Huygens Probe Landing Site</title><source>Elsevier ScienceDirect Journals</source><creator>Soderblom, Laurence A. ; Kirk, Randolph L. ; Lunine, Jonathan I. ; Anderson, Jeffrey A. ; Baines, Kevin H. ; Barnes, Jason W. ; Barrett, Janet M. ; Brown, Robert H. ; Buratti, Bonnie J. ; Clark, Roger N. ; Cruikshank, Dale P. ; Elachi, Charles ; Janssen, Michael A. ; Jaumann, Ralf ; Karkoschka, Erich ; Mouélic, Stéphane Le ; Lopes, Rosaly M. ; Lorenz, Ralph D. ; McCord, Thomas B. ; Nicholson, Philip D. ; Radebaugh, Jani ; Rizk, Bashar ; Sotin, Christophe ; Stofan, Ellen R. ; Sucharski, Tracie L. ; Tomasko, Martin G. ; Wall, Stephen D.</creator><creatorcontrib>Soderblom, Laurence A. ; Kirk, Randolph L. ; Lunine, Jonathan I. ; Anderson, Jeffrey A. ; Baines, Kevin H. ; Barnes, Jason W. ; Barrett, Janet M. ; Brown, Robert H. ; Buratti, Bonnie J. ; Clark, Roger N. ; Cruikshank, Dale P. ; Elachi, Charles ; Janssen, Michael A. ; Jaumann, Ralf ; Karkoschka, Erich ; Mouélic, Stéphane Le ; Lopes, Rosaly M. ; Lorenz, Ralph D. ; McCord, Thomas B. ; Nicholson, Philip D. ; Radebaugh, Jani ; Rizk, Bashar ; Sotin, Christophe ; Stofan, Ellen R. ; Sucharski, Tracie L. ; Tomasko, Martin G. ; Wall, Stephen D.</creatorcontrib><description>Titan's vast equatorial fields of RADAR-dark longitudinal dunes seen in Cassini RADAR synthetic aperture images correlate with one of two dark surface units discriminated as “brown” and “blue” in Visible and Infrared Mapping Spectrometer (VIMS) color composites of short-wavelength infrared spectral cubes (RGB as 2.0, 1.6, 1.3
μm). In such composites bluer materials exhibit higher reflectance at 1.3
μm and lower at 1.6 and 2.0
μm. The dark brown unit is highly correlated with the RADAR-dark dunes. The dark brown unit shows less evidence of water ice suggesting that the saltating grains of the dunes are largely composed of hydrocarbons and/or nitriles. In general, the bright units also show less evidence of absorption due to water ice and are inferred to consist of deposits of bright fine precipitating tholin aerosol dust. Some set of chemical/mechanical processes may be converting the bright fine-grained aerosol deposits into the dark saltating hydrocarbon and/or nitrile grains. Alternatively the dark dune materials may be derived from a different type of air aerosol photochemical product than are the bright materials. In our model, both the bright aerosol and dark hydrocarbon dune deposits mantle the VIMS dark blue water ice-rich substrate. We postulate that the bright mantles are effectively invisible (transparent) in RADAR synthetic aperture radar (SAR) images leading to lack of correlation in the RADAR images with optically bright mantling units. RADAR images mostly show only dark dunes and the water ice substrate that varies in roughness, fracturing, and porosity. If the rate of deposition of bright aerosol is 0.001–0.01
μm/yr, the surface would be coated (to optical instruments) in hundreds-to-thousands of years unless cleansing processes are active. The dark dunes must be mobile on this very short timescale to prevent the accumulation of bright coatings. Huygens landed in a region of the VIMS bright and dark blue materials and about 30
km south of the nearest occurrence of dunes visible in the RADAR SAR images. Fluvial/pluvial processes, every few centuries or millennia, must be cleansing the dark floors of the incised channels and scouring the dark plains at the Huygens landing site both imaged by Descent Imager/Spectral Radiometer (DISR).</description><identifier>ISSN: 0032-0633</identifier><identifier>EISSN: 1873-5088</identifier><identifier>DOI: 10.1016/j.pss.2007.04.014</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Aerosols ; Coatings ; DISR ; Dunes ; Hydrocarbons ; Mantles ; Radar ; SAR ; Substrate ; Tholin ; Titan ; Titriles ; VIMS ; Water ice</subject><ispartof>Planetary and space science, 2007-11, Vol.55 (13), p.2025-2036</ispartof><rights>2007 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-7d9e80b8e49f7a7381256f2e2474cd6017a9a00014a42c9d702024e46778ebd03</citedby><cites>FETCH-LOGICAL-c328t-7d9e80b8e49f7a7381256f2e2474cd6017a9a00014a42c9d702024e46778ebd03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0032063307001304$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Soderblom, Laurence A.</creatorcontrib><creatorcontrib>Kirk, Randolph L.</creatorcontrib><creatorcontrib>Lunine, Jonathan I.</creatorcontrib><creatorcontrib>Anderson, Jeffrey A.</creatorcontrib><creatorcontrib>Baines, Kevin H.</creatorcontrib><creatorcontrib>Barnes, Jason W.</creatorcontrib><creatorcontrib>Barrett, Janet M.</creatorcontrib><creatorcontrib>Brown, Robert H.</creatorcontrib><creatorcontrib>Buratti, Bonnie J.</creatorcontrib><creatorcontrib>Clark, Roger N.</creatorcontrib><creatorcontrib>Cruikshank, Dale P.</creatorcontrib><creatorcontrib>Elachi, Charles</creatorcontrib><creatorcontrib>Janssen, Michael A.</creatorcontrib><creatorcontrib>Jaumann, Ralf</creatorcontrib><creatorcontrib>Karkoschka, Erich</creatorcontrib><creatorcontrib>Mouélic, Stéphane Le</creatorcontrib><creatorcontrib>Lopes, Rosaly M.</creatorcontrib><creatorcontrib>Lorenz, Ralph D.</creatorcontrib><creatorcontrib>McCord, Thomas B.</creatorcontrib><creatorcontrib>Nicholson, Philip D.</creatorcontrib><creatorcontrib>Radebaugh, Jani</creatorcontrib><creatorcontrib>Rizk, Bashar</creatorcontrib><creatorcontrib>Sotin, Christophe</creatorcontrib><creatorcontrib>Stofan, Ellen R.</creatorcontrib><creatorcontrib>Sucharski, Tracie L.</creatorcontrib><creatorcontrib>Tomasko, Martin G.</creatorcontrib><creatorcontrib>Wall, Stephen D.</creatorcontrib><title>Correlations between Cassini VIMS spectra and RADAR SAR images: Implications for Titan's surface composition and the character of the Huygens Probe Landing Site</title><title>Planetary and space science</title><description>Titan's vast equatorial fields of RADAR-dark longitudinal dunes seen in Cassini RADAR synthetic aperture images correlate with one of two dark surface units discriminated as “brown” and “blue” in Visible and Infrared Mapping Spectrometer (VIMS) color composites of short-wavelength infrared spectral cubes (RGB as 2.0, 1.6, 1.3
μm). In such composites bluer materials exhibit higher reflectance at 1.3
μm and lower at 1.6 and 2.0
μm. The dark brown unit is highly correlated with the RADAR-dark dunes. The dark brown unit shows less evidence of water ice suggesting that the saltating grains of the dunes are largely composed of hydrocarbons and/or nitriles. In general, the bright units also show less evidence of absorption due to water ice and are inferred to consist of deposits of bright fine precipitating tholin aerosol dust. Some set of chemical/mechanical processes may be converting the bright fine-grained aerosol deposits into the dark saltating hydrocarbon and/or nitrile grains. Alternatively the dark dune materials may be derived from a different type of air aerosol photochemical product than are the bright materials. In our model, both the bright aerosol and dark hydrocarbon dune deposits mantle the VIMS dark blue water ice-rich substrate. We postulate that the bright mantles are effectively invisible (transparent) in RADAR synthetic aperture radar (SAR) images leading to lack of correlation in the RADAR images with optically bright mantling units. RADAR images mostly show only dark dunes and the water ice substrate that varies in roughness, fracturing, and porosity. If the rate of deposition of bright aerosol is 0.001–0.01
μm/yr, the surface would be coated (to optical instruments) in hundreds-to-thousands of years unless cleansing processes are active. The dark dunes must be mobile on this very short timescale to prevent the accumulation of bright coatings. Huygens landed in a region of the VIMS bright and dark blue materials and about 30
km south of the nearest occurrence of dunes visible in the RADAR SAR images. Fluvial/pluvial processes, every few centuries or millennia, must be cleansing the dark floors of the incised channels and scouring the dark plains at the Huygens landing site both imaged by Descent Imager/Spectral Radiometer (DISR).</description><subject>Aerosols</subject><subject>Coatings</subject><subject>DISR</subject><subject>Dunes</subject><subject>Hydrocarbons</subject><subject>Mantles</subject><subject>Radar</subject><subject>SAR</subject><subject>Substrate</subject><subject>Tholin</subject><subject>Titan</subject><subject>Titriles</subject><subject>VIMS</subject><subject>Water ice</subject><issn>0032-0633</issn><issn>1873-5088</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9UcFuEzEQtRCVCIUP4OYTnHY79rrrXThFAdpIQUVN4Wo53tnU0Wa9eBxQ_6afWqfpmcNopNF7b_TeY-yDgFKAqC925URUSgBdgipBqFdsJhpdFZfQNK_ZDKCSBdRV9Ya9JdoBQF1LPWOPixAjDjb5MBLfYPqHOPKFJfKj57-XP9acJnQpWm7Hjt_Ov85v-TqP39st0me-3E-Ddy_8PkR-55MdPxGnQ-ytQ-7Cfgrkj4BniXSfb_c2Wpcw8tA_H64PD1vMAj9j2CBfZZwft3ztE75jZ70dCN-_7HP26_u3u8V1sbq5Wi7mq8JVskmF7lpsYNOganttddUIeVn3EqXSynU1CG1bm10LZZV0badBglSoaq0b3HRQnbOPJ90phj8HpGT2nhwOgx0xHMiIVtVSKJ2B4gR0MRBF7M0UcxjxwQgwxy7MzuQuzLELA8rkl5nz5cTB7OCvx2jIeRwddj7mcE0X_H_YTyNvkrg</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Soderblom, Laurence A.</creator><creator>Kirk, Randolph L.</creator><creator>Lunine, Jonathan I.</creator><creator>Anderson, Jeffrey A.</creator><creator>Baines, Kevin H.</creator><creator>Barnes, Jason W.</creator><creator>Barrett, Janet M.</creator><creator>Brown, Robert H.</creator><creator>Buratti, Bonnie J.</creator><creator>Clark, Roger N.</creator><creator>Cruikshank, Dale P.</creator><creator>Elachi, Charles</creator><creator>Janssen, Michael A.</creator><creator>Jaumann, Ralf</creator><creator>Karkoschka, Erich</creator><creator>Mouélic, Stéphane Le</creator><creator>Lopes, Rosaly M.</creator><creator>Lorenz, Ralph D.</creator><creator>McCord, Thomas B.</creator><creator>Nicholson, Philip D.</creator><creator>Radebaugh, Jani</creator><creator>Rizk, Bashar</creator><creator>Sotin, Christophe</creator><creator>Stofan, Ellen R.</creator><creator>Sucharski, Tracie L.</creator><creator>Tomasko, Martin G.</creator><creator>Wall, Stephen D.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20071101</creationdate><title>Correlations between Cassini VIMS spectra and RADAR SAR images: Implications for Titan's surface composition and the character of the Huygens Probe Landing Site</title><author>Soderblom, Laurence A. ; Kirk, Randolph L. ; Lunine, Jonathan I. ; Anderson, Jeffrey A. ; Baines, Kevin H. ; Barnes, Jason W. ; Barrett, Janet M. ; Brown, Robert H. ; Buratti, Bonnie J. ; Clark, Roger N. ; Cruikshank, Dale P. ; Elachi, Charles ; Janssen, Michael A. ; Jaumann, Ralf ; Karkoschka, Erich ; Mouélic, Stéphane Le ; Lopes, Rosaly M. ; Lorenz, Ralph D. ; McCord, Thomas B. ; Nicholson, Philip D. ; Radebaugh, Jani ; Rizk, Bashar ; Sotin, Christophe ; Stofan, Ellen R. ; Sucharski, Tracie L. ; Tomasko, Martin G. ; Wall, Stephen D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-7d9e80b8e49f7a7381256f2e2474cd6017a9a00014a42c9d702024e46778ebd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aerosols</topic><topic>Coatings</topic><topic>DISR</topic><topic>Dunes</topic><topic>Hydrocarbons</topic><topic>Mantles</topic><topic>Radar</topic><topic>SAR</topic><topic>Substrate</topic><topic>Tholin</topic><topic>Titan</topic><topic>Titriles</topic><topic>VIMS</topic><topic>Water ice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soderblom, Laurence A.</creatorcontrib><creatorcontrib>Kirk, Randolph L.</creatorcontrib><creatorcontrib>Lunine, Jonathan I.</creatorcontrib><creatorcontrib>Anderson, Jeffrey A.</creatorcontrib><creatorcontrib>Baines, Kevin H.</creatorcontrib><creatorcontrib>Barnes, Jason W.</creatorcontrib><creatorcontrib>Barrett, Janet M.</creatorcontrib><creatorcontrib>Brown, Robert H.</creatorcontrib><creatorcontrib>Buratti, Bonnie J.</creatorcontrib><creatorcontrib>Clark, Roger N.</creatorcontrib><creatorcontrib>Cruikshank, Dale P.</creatorcontrib><creatorcontrib>Elachi, Charles</creatorcontrib><creatorcontrib>Janssen, Michael A.</creatorcontrib><creatorcontrib>Jaumann, Ralf</creatorcontrib><creatorcontrib>Karkoschka, Erich</creatorcontrib><creatorcontrib>Mouélic, Stéphane Le</creatorcontrib><creatorcontrib>Lopes, Rosaly M.</creatorcontrib><creatorcontrib>Lorenz, Ralph D.</creatorcontrib><creatorcontrib>McCord, Thomas B.</creatorcontrib><creatorcontrib>Nicholson, Philip D.</creatorcontrib><creatorcontrib>Radebaugh, Jani</creatorcontrib><creatorcontrib>Rizk, Bashar</creatorcontrib><creatorcontrib>Sotin, Christophe</creatorcontrib><creatorcontrib>Stofan, Ellen R.</creatorcontrib><creatorcontrib>Sucharski, Tracie L.</creatorcontrib><creatorcontrib>Tomasko, Martin G.</creatorcontrib><creatorcontrib>Wall, Stephen D.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Planetary and space science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soderblom, Laurence A.</au><au>Kirk, Randolph L.</au><au>Lunine, Jonathan I.</au><au>Anderson, Jeffrey A.</au><au>Baines, Kevin H.</au><au>Barnes, Jason W.</au><au>Barrett, Janet M.</au><au>Brown, Robert H.</au><au>Buratti, Bonnie J.</au><au>Clark, Roger N.</au><au>Cruikshank, Dale P.</au><au>Elachi, Charles</au><au>Janssen, Michael A.</au><au>Jaumann, Ralf</au><au>Karkoschka, Erich</au><au>Mouélic, Stéphane Le</au><au>Lopes, Rosaly M.</au><au>Lorenz, Ralph D.</au><au>McCord, Thomas B.</au><au>Nicholson, Philip D.</au><au>Radebaugh, Jani</au><au>Rizk, Bashar</au><au>Sotin, Christophe</au><au>Stofan, Ellen R.</au><au>Sucharski, Tracie L.</au><au>Tomasko, Martin G.</au><au>Wall, Stephen D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlations between Cassini VIMS spectra and RADAR SAR images: Implications for Titan's surface composition and the character of the Huygens Probe Landing Site</atitle><jtitle>Planetary and space science</jtitle><date>2007-11-01</date><risdate>2007</risdate><volume>55</volume><issue>13</issue><spage>2025</spage><epage>2036</epage><pages>2025-2036</pages><issn>0032-0633</issn><eissn>1873-5088</eissn><abstract>Titan's vast equatorial fields of RADAR-dark longitudinal dunes seen in Cassini RADAR synthetic aperture images correlate with one of two dark surface units discriminated as “brown” and “blue” in Visible and Infrared Mapping Spectrometer (VIMS) color composites of short-wavelength infrared spectral cubes (RGB as 2.0, 1.6, 1.3
μm). In such composites bluer materials exhibit higher reflectance at 1.3
μm and lower at 1.6 and 2.0
μm. The dark brown unit is highly correlated with the RADAR-dark dunes. The dark brown unit shows less evidence of water ice suggesting that the saltating grains of the dunes are largely composed of hydrocarbons and/or nitriles. In general, the bright units also show less evidence of absorption due to water ice and are inferred to consist of deposits of bright fine precipitating tholin aerosol dust. Some set of chemical/mechanical processes may be converting the bright fine-grained aerosol deposits into the dark saltating hydrocarbon and/or nitrile grains. Alternatively the dark dune materials may be derived from a different type of air aerosol photochemical product than are the bright materials. In our model, both the bright aerosol and dark hydrocarbon dune deposits mantle the VIMS dark blue water ice-rich substrate. We postulate that the bright mantles are effectively invisible (transparent) in RADAR synthetic aperture radar (SAR) images leading to lack of correlation in the RADAR images with optically bright mantling units. RADAR images mostly show only dark dunes and the water ice substrate that varies in roughness, fracturing, and porosity. If the rate of deposition of bright aerosol is 0.001–0.01
μm/yr, the surface would be coated (to optical instruments) in hundreds-to-thousands of years unless cleansing processes are active. The dark dunes must be mobile on this very short timescale to prevent the accumulation of bright coatings. Huygens landed in a region of the VIMS bright and dark blue materials and about 30
km south of the nearest occurrence of dunes visible in the RADAR SAR images. Fluvial/pluvial processes, every few centuries or millennia, must be cleansing the dark floors of the incised channels and scouring the dark plains at the Huygens landing site both imaged by Descent Imager/Spectral Radiometer (DISR).</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.pss.2007.04.014</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0633 |
ispartof | Planetary and space science, 2007-11, Vol.55 (13), p.2025-2036 |
issn | 0032-0633 1873-5088 |
language | eng |
recordid | cdi_proquest_miscellaneous_19462147 |
source | Elsevier ScienceDirect Journals |
subjects | Aerosols Coatings DISR Dunes Hydrocarbons Mantles Radar SAR Substrate Tholin Titan Titriles VIMS Water ice |
title | Correlations between Cassini VIMS spectra and RADAR SAR images: Implications for Titan's surface composition and the character of the Huygens Probe Landing Site |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A09%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlations%20between%20Cassini%20VIMS%20spectra%20and%20RADAR%20SAR%20images:%20Implications%20for%20Titan's%20surface%20composition%20and%20the%20character%20of%20the%20Huygens%20Probe%20Landing%20Site&rft.jtitle=Planetary%20and%20space%20science&rft.au=Soderblom,%20Laurence%20A.&rft.date=2007-11-01&rft.volume=55&rft.issue=13&rft.spage=2025&rft.epage=2036&rft.pages=2025-2036&rft.issn=0032-0633&rft.eissn=1873-5088&rft_id=info:doi/10.1016/j.pss.2007.04.014&rft_dat=%3Cproquest_cross%3E19462147%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19462147&rft_id=info:pmid/&rft_els_id=S0032063307001304&rfr_iscdi=true |