Human osteoblasts grow transitional Si/N apatite in quickly osteointegrated Si3N4 cervical insert

[Display omitted] Silicon nitride (Si3N4) ceramics possesses surface chemistry that accelerates bone repair, as previously established by in vitro experiments using both osteosarcoma and mesenchymal cells. The release of silicic acid and nitrogen compounds from the surface Si3N4 enhanced in vitro ce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2017-12, Vol.64, p.411-420
Hauptverfasser: Pezzotti, Giuseppe, Oba, Naoki, Zhu, Wenliang, Marin, Elia, Rondinella, Alfredo, Boschetto, Francesco, McEntire, Bryan, Yamamoto, Kengo, Bal, B. Sonny
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 420
container_issue
container_start_page 411
container_title Acta biomaterialia
container_volume 64
creator Pezzotti, Giuseppe
Oba, Naoki
Zhu, Wenliang
Marin, Elia
Rondinella, Alfredo
Boschetto, Francesco
McEntire, Bryan
Yamamoto, Kengo
Bal, B. Sonny
description [Display omitted] Silicon nitride (Si3N4) ceramics possesses surface chemistry that accelerates bone repair, as previously established by in vitro experiments using both osteosarcoma and mesenchymal cells. The release of silicic acid and nitrogen compounds from the surface Si3N4 enhanced in vitro cellular activity. The results of this study demonstrate for the first time that the osseointegration behavior previously observed is operative with a peculiar chemistry within the human milieu. Si and N elements stimulated progenitor cell differentiation and osteoblastic activity, which ultimately resulted in accelerated bone ingrowth. At the molecular scale, insight into the effect of silicon and nitrogen ions released from the Si3N4 surface was obtained through combined histomorphometric analyses, Raman, Fourier-transform-infrared, and X-ray photoelectron spectroscopies. Identical analyses conducted on a polyetheretherketone (PEEK) spinal explant showed no chemical changes and a lower propensity for osteogenic activity. Silicon and nitrogen are key elements in stimulating cells to generate bony apatite with crystallographic imperfections, leading to enhanced bioactivity of Si3N4 biomedical devices. This research studies osseointegration processes comparing results from explanted PEEK and Si3N4 spinal spacers. Data show that the formation of hydroxyapatite on silicon nitride bio-ceramic surfaces happens with a peculiar mechanism inside the human body. Silicon and nitrogen were incorporated inside the bony tissue structure allowing the developing of off-stoichiometric bony apatite and stimulating progenitor cell differentiation/osteoblastic activity. Silicon and nitrogen ions released from the Si3N4 surface were detected through combined histologic analyses, Raman microspectroscopy, Fourier-transform-infrared, and X-ray photoelectron spectroscopies.
doi_str_mv 10.1016/j.actbio.2017.09.038
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1945217848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706117306104</els_id><sourcerecordid>1980755770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-2ebf46fa34ee49dac8aa6a904cf7e72217411da7c104f0461c25d4c9062c82533</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMo-PkPXBTcuGlN0rRJN4IM6giiC3Ud3qSvktppxiQd8d-boa5cuHpvcc6Fewk5Z7RglNVXfQEmrqwrOGWyoE1BS7VHjpiSKpdVrfbTLwXPJa3ZITkOoaeJYFwdEVhOaxgzFyK61QAhhuzdu68sehiDjdaNMGQv9uopgw1EGzGzY_Y5WfMxfM-WHSO-e4jYJq58EplBv7UmaXYM6OMpOehgCHj2e0_I293t62KZPz7fPyxuHnMjyjLmHFedqDsoBaJoWjAKoIaGCtNJlJynAoy1IA2joqOiZoZXrTANrblRvCrLE3I55268-5wwRL22weAwwIhuCpo1okopSqiEXvxBezf51HRHKSqrSkqaKDFTxrsQPHZ64-0a_LdmVO92172ed9e73TVtdFo1adezhqns1qLXwVgcDbbWo4m6dfb_gB8EmI32</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1980755770</pqid></control><display><type>article</type><title>Human osteoblasts grow transitional Si/N apatite in quickly osteointegrated Si3N4 cervical insert</title><source>Elsevier ScienceDirect Journals</source><creator>Pezzotti, Giuseppe ; Oba, Naoki ; Zhu, Wenliang ; Marin, Elia ; Rondinella, Alfredo ; Boschetto, Francesco ; McEntire, Bryan ; Yamamoto, Kengo ; Bal, B. Sonny</creator><creatorcontrib>Pezzotti, Giuseppe ; Oba, Naoki ; Zhu, Wenliang ; Marin, Elia ; Rondinella, Alfredo ; Boschetto, Francesco ; McEntire, Bryan ; Yamamoto, Kengo ; Bal, B. Sonny</creatorcontrib><description>[Display omitted] Silicon nitride (Si3N4) ceramics possesses surface chemistry that accelerates bone repair, as previously established by in vitro experiments using both osteosarcoma and mesenchymal cells. The release of silicic acid and nitrogen compounds from the surface Si3N4 enhanced in vitro cellular activity. The results of this study demonstrate for the first time that the osseointegration behavior previously observed is operative with a peculiar chemistry within the human milieu. Si and N elements stimulated progenitor cell differentiation and osteoblastic activity, which ultimately resulted in accelerated bone ingrowth. At the molecular scale, insight into the effect of silicon and nitrogen ions released from the Si3N4 surface was obtained through combined histomorphometric analyses, Raman, Fourier-transform-infrared, and X-ray photoelectron spectroscopies. Identical analyses conducted on a polyetheretherketone (PEEK) spinal explant showed no chemical changes and a lower propensity for osteogenic activity. Silicon and nitrogen are key elements in stimulating cells to generate bony apatite with crystallographic imperfections, leading to enhanced bioactivity of Si3N4 biomedical devices. This research studies osseointegration processes comparing results from explanted PEEK and Si3N4 spinal spacers. Data show that the formation of hydroxyapatite on silicon nitride bio-ceramic surfaces happens with a peculiar mechanism inside the human body. Silicon and nitrogen were incorporated inside the bony tissue structure allowing the developing of off-stoichiometric bony apatite and stimulating progenitor cell differentiation/osteoblastic activity. Silicon and nitrogen ions released from the Si3N4 surface were detected through combined histologic analyses, Raman microspectroscopy, Fourier-transform-infrared, and X-ray photoelectron spectroscopies.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2017.09.038</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Apatite ; Biocompatibility ; Biological activity ; Biomedical materials ; Biosensors ; Bone healing ; Cell differentiation ; Crystallography ; Fourier Transform Infrared Spectroscopy ; Fourier transforms ; Human behavior ; Hydroxyapatite ; Infrared analysis ; Mesenchyme ; Nitrogen ; Nitrogen compounds ; Nitrogen ions ; Osseointegration ; Osteoblastogenesis ; Osteoblasts ; Osteosarcoma ; PEEK ; Polyether ether ketones ; Progenitor cells ; Raman micro-spectroscopy ; Silicic acid ; Silicon ; Silicon nitride ; Surface chemistry ; Tissue engineering</subject><ispartof>Acta biomaterialia, 2017-12, Vol.64, p.411-420</ispartof><rights>2017 Acta Materialia Inc.</rights><rights>Copyright Elsevier BV Dec 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-2ebf46fa34ee49dac8aa6a904cf7e72217411da7c104f0461c25d4c9062c82533</citedby><cites>FETCH-LOGICAL-c433t-2ebf46fa34ee49dac8aa6a904cf7e72217411da7c104f0461c25d4c9062c82533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1742706117306104$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Pezzotti, Giuseppe</creatorcontrib><creatorcontrib>Oba, Naoki</creatorcontrib><creatorcontrib>Zhu, Wenliang</creatorcontrib><creatorcontrib>Marin, Elia</creatorcontrib><creatorcontrib>Rondinella, Alfredo</creatorcontrib><creatorcontrib>Boschetto, Francesco</creatorcontrib><creatorcontrib>McEntire, Bryan</creatorcontrib><creatorcontrib>Yamamoto, Kengo</creatorcontrib><creatorcontrib>Bal, B. Sonny</creatorcontrib><title>Human osteoblasts grow transitional Si/N apatite in quickly osteointegrated Si3N4 cervical insert</title><title>Acta biomaterialia</title><description>[Display omitted] Silicon nitride (Si3N4) ceramics possesses surface chemistry that accelerates bone repair, as previously established by in vitro experiments using both osteosarcoma and mesenchymal cells. The release of silicic acid and nitrogen compounds from the surface Si3N4 enhanced in vitro cellular activity. The results of this study demonstrate for the first time that the osseointegration behavior previously observed is operative with a peculiar chemistry within the human milieu. Si and N elements stimulated progenitor cell differentiation and osteoblastic activity, which ultimately resulted in accelerated bone ingrowth. At the molecular scale, insight into the effect of silicon and nitrogen ions released from the Si3N4 surface was obtained through combined histomorphometric analyses, Raman, Fourier-transform-infrared, and X-ray photoelectron spectroscopies. Identical analyses conducted on a polyetheretherketone (PEEK) spinal explant showed no chemical changes and a lower propensity for osteogenic activity. Silicon and nitrogen are key elements in stimulating cells to generate bony apatite with crystallographic imperfections, leading to enhanced bioactivity of Si3N4 biomedical devices. This research studies osseointegration processes comparing results from explanted PEEK and Si3N4 spinal spacers. Data show that the formation of hydroxyapatite on silicon nitride bio-ceramic surfaces happens with a peculiar mechanism inside the human body. Silicon and nitrogen were incorporated inside the bony tissue structure allowing the developing of off-stoichiometric bony apatite and stimulating progenitor cell differentiation/osteoblastic activity. Silicon and nitrogen ions released from the Si3N4 surface were detected through combined histologic analyses, Raman microspectroscopy, Fourier-transform-infrared, and X-ray photoelectron spectroscopies.</description><subject>Apatite</subject><subject>Biocompatibility</subject><subject>Biological activity</subject><subject>Biomedical materials</subject><subject>Biosensors</subject><subject>Bone healing</subject><subject>Cell differentiation</subject><subject>Crystallography</subject><subject>Fourier Transform Infrared Spectroscopy</subject><subject>Fourier transforms</subject><subject>Human behavior</subject><subject>Hydroxyapatite</subject><subject>Infrared analysis</subject><subject>Mesenchyme</subject><subject>Nitrogen</subject><subject>Nitrogen compounds</subject><subject>Nitrogen ions</subject><subject>Osseointegration</subject><subject>Osteoblastogenesis</subject><subject>Osteoblasts</subject><subject>Osteosarcoma</subject><subject>PEEK</subject><subject>Polyether ether ketones</subject><subject>Progenitor cells</subject><subject>Raman micro-spectroscopy</subject><subject>Silicic acid</subject><subject>Silicon</subject><subject>Silicon nitride</subject><subject>Surface chemistry</subject><subject>Tissue engineering</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMo-PkPXBTcuGlN0rRJN4IM6giiC3Ud3qSvktppxiQd8d-boa5cuHpvcc6Fewk5Z7RglNVXfQEmrqwrOGWyoE1BS7VHjpiSKpdVrfbTLwXPJa3ZITkOoaeJYFwdEVhOaxgzFyK61QAhhuzdu68sehiDjdaNMGQv9uopgw1EGzGzY_Y5WfMxfM-WHSO-e4jYJq58EplBv7UmaXYM6OMpOehgCHj2e0_I293t62KZPz7fPyxuHnMjyjLmHFedqDsoBaJoWjAKoIaGCtNJlJynAoy1IA2joqOiZoZXrTANrblRvCrLE3I55268-5wwRL22weAwwIhuCpo1okopSqiEXvxBezf51HRHKSqrSkqaKDFTxrsQPHZ64-0a_LdmVO92172ed9e73TVtdFo1adezhqns1qLXwVgcDbbWo4m6dfb_gB8EmI32</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Pezzotti, Giuseppe</creator><creator>Oba, Naoki</creator><creator>Zhu, Wenliang</creator><creator>Marin, Elia</creator><creator>Rondinella, Alfredo</creator><creator>Boschetto, Francesco</creator><creator>McEntire, Bryan</creator><creator>Yamamoto, Kengo</creator><creator>Bal, B. Sonny</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201712</creationdate><title>Human osteoblasts grow transitional Si/N apatite in quickly osteointegrated Si3N4 cervical insert</title><author>Pezzotti, Giuseppe ; Oba, Naoki ; Zhu, Wenliang ; Marin, Elia ; Rondinella, Alfredo ; Boschetto, Francesco ; McEntire, Bryan ; Yamamoto, Kengo ; Bal, B. Sonny</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-2ebf46fa34ee49dac8aa6a904cf7e72217411da7c104f0461c25d4c9062c82533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Apatite</topic><topic>Biocompatibility</topic><topic>Biological activity</topic><topic>Biomedical materials</topic><topic>Biosensors</topic><topic>Bone healing</topic><topic>Cell differentiation</topic><topic>Crystallography</topic><topic>Fourier Transform Infrared Spectroscopy</topic><topic>Fourier transforms</topic><topic>Human behavior</topic><topic>Hydroxyapatite</topic><topic>Infrared analysis</topic><topic>Mesenchyme</topic><topic>Nitrogen</topic><topic>Nitrogen compounds</topic><topic>Nitrogen ions</topic><topic>Osseointegration</topic><topic>Osteoblastogenesis</topic><topic>Osteoblasts</topic><topic>Osteosarcoma</topic><topic>PEEK</topic><topic>Polyether ether ketones</topic><topic>Progenitor cells</topic><topic>Raman micro-spectroscopy</topic><topic>Silicic acid</topic><topic>Silicon</topic><topic>Silicon nitride</topic><topic>Surface chemistry</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pezzotti, Giuseppe</creatorcontrib><creatorcontrib>Oba, Naoki</creatorcontrib><creatorcontrib>Zhu, Wenliang</creatorcontrib><creatorcontrib>Marin, Elia</creatorcontrib><creatorcontrib>Rondinella, Alfredo</creatorcontrib><creatorcontrib>Boschetto, Francesco</creatorcontrib><creatorcontrib>McEntire, Bryan</creatorcontrib><creatorcontrib>Yamamoto, Kengo</creatorcontrib><creatorcontrib>Bal, B. Sonny</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pezzotti, Giuseppe</au><au>Oba, Naoki</au><au>Zhu, Wenliang</au><au>Marin, Elia</au><au>Rondinella, Alfredo</au><au>Boschetto, Francesco</au><au>McEntire, Bryan</au><au>Yamamoto, Kengo</au><au>Bal, B. Sonny</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human osteoblasts grow transitional Si/N apatite in quickly osteointegrated Si3N4 cervical insert</atitle><jtitle>Acta biomaterialia</jtitle><date>2017-12</date><risdate>2017</risdate><volume>64</volume><spage>411</spage><epage>420</epage><pages>411-420</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>[Display omitted] Silicon nitride (Si3N4) ceramics possesses surface chemistry that accelerates bone repair, as previously established by in vitro experiments using both osteosarcoma and mesenchymal cells. The release of silicic acid and nitrogen compounds from the surface Si3N4 enhanced in vitro cellular activity. The results of this study demonstrate for the first time that the osseointegration behavior previously observed is operative with a peculiar chemistry within the human milieu. Si and N elements stimulated progenitor cell differentiation and osteoblastic activity, which ultimately resulted in accelerated bone ingrowth. At the molecular scale, insight into the effect of silicon and nitrogen ions released from the Si3N4 surface was obtained through combined histomorphometric analyses, Raman, Fourier-transform-infrared, and X-ray photoelectron spectroscopies. Identical analyses conducted on a polyetheretherketone (PEEK) spinal explant showed no chemical changes and a lower propensity for osteogenic activity. Silicon and nitrogen are key elements in stimulating cells to generate bony apatite with crystallographic imperfections, leading to enhanced bioactivity of Si3N4 biomedical devices. This research studies osseointegration processes comparing results from explanted PEEK and Si3N4 spinal spacers. Data show that the formation of hydroxyapatite on silicon nitride bio-ceramic surfaces happens with a peculiar mechanism inside the human body. Silicon and nitrogen were incorporated inside the bony tissue structure allowing the developing of off-stoichiometric bony apatite and stimulating progenitor cell differentiation/osteoblastic activity. Silicon and nitrogen ions released from the Si3N4 surface were detected through combined histologic analyses, Raman microspectroscopy, Fourier-transform-infrared, and X-ray photoelectron spectroscopies.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actbio.2017.09.038</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2017-12, Vol.64, p.411-420
issn 1742-7061
1878-7568
language eng
recordid cdi_proquest_miscellaneous_1945217848
source Elsevier ScienceDirect Journals
subjects Apatite
Biocompatibility
Biological activity
Biomedical materials
Biosensors
Bone healing
Cell differentiation
Crystallography
Fourier Transform Infrared Spectroscopy
Fourier transforms
Human behavior
Hydroxyapatite
Infrared analysis
Mesenchyme
Nitrogen
Nitrogen compounds
Nitrogen ions
Osseointegration
Osteoblastogenesis
Osteoblasts
Osteosarcoma
PEEK
Polyether ether ketones
Progenitor cells
Raman micro-spectroscopy
Silicic acid
Silicon
Silicon nitride
Surface chemistry
Tissue engineering
title Human osteoblasts grow transitional Si/N apatite in quickly osteointegrated Si3N4 cervical insert
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A03%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20osteoblasts%20grow%20transitional%20Si/N%20apatite%20in%20quickly%20osteointegrated%20Si3N4%20cervical%20insert&rft.jtitle=Acta%20biomaterialia&rft.au=Pezzotti,%20Giuseppe&rft.date=2017-12&rft.volume=64&rft.spage=411&rft.epage=420&rft.pages=411-420&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2017.09.038&rft_dat=%3Cproquest_cross%3E1980755770%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1980755770&rft_id=info:pmid/&rft_els_id=S1742706117306104&rfr_iscdi=true