Human osteoblasts grow transitional Si/N apatite in quickly osteointegrated Si3N4 cervical insert
[Display omitted] Silicon nitride (Si3N4) ceramics possesses surface chemistry that accelerates bone repair, as previously established by in vitro experiments using both osteosarcoma and mesenchymal cells. The release of silicic acid and nitrogen compounds from the surface Si3N4 enhanced in vitro ce...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2017-12, Vol.64, p.411-420 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 420 |
---|---|
container_issue | |
container_start_page | 411 |
container_title | Acta biomaterialia |
container_volume | 64 |
creator | Pezzotti, Giuseppe Oba, Naoki Zhu, Wenliang Marin, Elia Rondinella, Alfredo Boschetto, Francesco McEntire, Bryan Yamamoto, Kengo Bal, B. Sonny |
description | [Display omitted]
Silicon nitride (Si3N4) ceramics possesses surface chemistry that accelerates bone repair, as previously established by in vitro experiments using both osteosarcoma and mesenchymal cells. The release of silicic acid and nitrogen compounds from the surface Si3N4 enhanced in vitro cellular activity. The results of this study demonstrate for the first time that the osseointegration behavior previously observed is operative with a peculiar chemistry within the human milieu. Si and N elements stimulated progenitor cell differentiation and osteoblastic activity, which ultimately resulted in accelerated bone ingrowth. At the molecular scale, insight into the effect of silicon and nitrogen ions released from the Si3N4 surface was obtained through combined histomorphometric analyses, Raman, Fourier-transform-infrared, and X-ray photoelectron spectroscopies. Identical analyses conducted on a polyetheretherketone (PEEK) spinal explant showed no chemical changes and a lower propensity for osteogenic activity. Silicon and nitrogen are key elements in stimulating cells to generate bony apatite with crystallographic imperfections, leading to enhanced bioactivity of Si3N4 biomedical devices.
This research studies osseointegration processes comparing results from explanted PEEK and Si3N4 spinal spacers. Data show that the formation of hydroxyapatite on silicon nitride bio-ceramic surfaces happens with a peculiar mechanism inside the human body. Silicon and nitrogen were incorporated inside the bony tissue structure allowing the developing of off-stoichiometric bony apatite and stimulating progenitor cell differentiation/osteoblastic activity. Silicon and nitrogen ions released from the Si3N4 surface were detected through combined histologic analyses, Raman microspectroscopy, Fourier-transform-infrared, and X-ray photoelectron spectroscopies. |
doi_str_mv | 10.1016/j.actbio.2017.09.038 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1945217848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706117306104</els_id><sourcerecordid>1980755770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-2ebf46fa34ee49dac8aa6a904cf7e72217411da7c104f0461c25d4c9062c82533</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMo-PkPXBTcuGlN0rRJN4IM6giiC3Ud3qSvktppxiQd8d-boa5cuHpvcc6Fewk5Z7RglNVXfQEmrqwrOGWyoE1BS7VHjpiSKpdVrfbTLwXPJa3ZITkOoaeJYFwdEVhOaxgzFyK61QAhhuzdu68sehiDjdaNMGQv9uopgw1EGzGzY_Y5WfMxfM-WHSO-e4jYJq58EplBv7UmaXYM6OMpOehgCHj2e0_I293t62KZPz7fPyxuHnMjyjLmHFedqDsoBaJoWjAKoIaGCtNJlJynAoy1IA2joqOiZoZXrTANrblRvCrLE3I55268-5wwRL22weAwwIhuCpo1okopSqiEXvxBezf51HRHKSqrSkqaKDFTxrsQPHZ64-0a_LdmVO92172ed9e73TVtdFo1adezhqns1qLXwVgcDbbWo4m6dfb_gB8EmI32</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1980755770</pqid></control><display><type>article</type><title>Human osteoblasts grow transitional Si/N apatite in quickly osteointegrated Si3N4 cervical insert</title><source>Elsevier ScienceDirect Journals</source><creator>Pezzotti, Giuseppe ; Oba, Naoki ; Zhu, Wenliang ; Marin, Elia ; Rondinella, Alfredo ; Boschetto, Francesco ; McEntire, Bryan ; Yamamoto, Kengo ; Bal, B. Sonny</creator><creatorcontrib>Pezzotti, Giuseppe ; Oba, Naoki ; Zhu, Wenliang ; Marin, Elia ; Rondinella, Alfredo ; Boschetto, Francesco ; McEntire, Bryan ; Yamamoto, Kengo ; Bal, B. Sonny</creatorcontrib><description>[Display omitted]
Silicon nitride (Si3N4) ceramics possesses surface chemistry that accelerates bone repair, as previously established by in vitro experiments using both osteosarcoma and mesenchymal cells. The release of silicic acid and nitrogen compounds from the surface Si3N4 enhanced in vitro cellular activity. The results of this study demonstrate for the first time that the osseointegration behavior previously observed is operative with a peculiar chemistry within the human milieu. Si and N elements stimulated progenitor cell differentiation and osteoblastic activity, which ultimately resulted in accelerated bone ingrowth. At the molecular scale, insight into the effect of silicon and nitrogen ions released from the Si3N4 surface was obtained through combined histomorphometric analyses, Raman, Fourier-transform-infrared, and X-ray photoelectron spectroscopies. Identical analyses conducted on a polyetheretherketone (PEEK) spinal explant showed no chemical changes and a lower propensity for osteogenic activity. Silicon and nitrogen are key elements in stimulating cells to generate bony apatite with crystallographic imperfections, leading to enhanced bioactivity of Si3N4 biomedical devices.
This research studies osseointegration processes comparing results from explanted PEEK and Si3N4 spinal spacers. Data show that the formation of hydroxyapatite on silicon nitride bio-ceramic surfaces happens with a peculiar mechanism inside the human body. Silicon and nitrogen were incorporated inside the bony tissue structure allowing the developing of off-stoichiometric bony apatite and stimulating progenitor cell differentiation/osteoblastic activity. Silicon and nitrogen ions released from the Si3N4 surface were detected through combined histologic analyses, Raman microspectroscopy, Fourier-transform-infrared, and X-ray photoelectron spectroscopies.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2017.09.038</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Apatite ; Biocompatibility ; Biological activity ; Biomedical materials ; Biosensors ; Bone healing ; Cell differentiation ; Crystallography ; Fourier Transform Infrared Spectroscopy ; Fourier transforms ; Human behavior ; Hydroxyapatite ; Infrared analysis ; Mesenchyme ; Nitrogen ; Nitrogen compounds ; Nitrogen ions ; Osseointegration ; Osteoblastogenesis ; Osteoblasts ; Osteosarcoma ; PEEK ; Polyether ether ketones ; Progenitor cells ; Raman micro-spectroscopy ; Silicic acid ; Silicon ; Silicon nitride ; Surface chemistry ; Tissue engineering</subject><ispartof>Acta biomaterialia, 2017-12, Vol.64, p.411-420</ispartof><rights>2017 Acta Materialia Inc.</rights><rights>Copyright Elsevier BV Dec 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-2ebf46fa34ee49dac8aa6a904cf7e72217411da7c104f0461c25d4c9062c82533</citedby><cites>FETCH-LOGICAL-c433t-2ebf46fa34ee49dac8aa6a904cf7e72217411da7c104f0461c25d4c9062c82533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1742706117306104$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Pezzotti, Giuseppe</creatorcontrib><creatorcontrib>Oba, Naoki</creatorcontrib><creatorcontrib>Zhu, Wenliang</creatorcontrib><creatorcontrib>Marin, Elia</creatorcontrib><creatorcontrib>Rondinella, Alfredo</creatorcontrib><creatorcontrib>Boschetto, Francesco</creatorcontrib><creatorcontrib>McEntire, Bryan</creatorcontrib><creatorcontrib>Yamamoto, Kengo</creatorcontrib><creatorcontrib>Bal, B. Sonny</creatorcontrib><title>Human osteoblasts grow transitional Si/N apatite in quickly osteointegrated Si3N4 cervical insert</title><title>Acta biomaterialia</title><description>[Display omitted]
Silicon nitride (Si3N4) ceramics possesses surface chemistry that accelerates bone repair, as previously established by in vitro experiments using both osteosarcoma and mesenchymal cells. The release of silicic acid and nitrogen compounds from the surface Si3N4 enhanced in vitro cellular activity. The results of this study demonstrate for the first time that the osseointegration behavior previously observed is operative with a peculiar chemistry within the human milieu. Si and N elements stimulated progenitor cell differentiation and osteoblastic activity, which ultimately resulted in accelerated bone ingrowth. At the molecular scale, insight into the effect of silicon and nitrogen ions released from the Si3N4 surface was obtained through combined histomorphometric analyses, Raman, Fourier-transform-infrared, and X-ray photoelectron spectroscopies. Identical analyses conducted on a polyetheretherketone (PEEK) spinal explant showed no chemical changes and a lower propensity for osteogenic activity. Silicon and nitrogen are key elements in stimulating cells to generate bony apatite with crystallographic imperfections, leading to enhanced bioactivity of Si3N4 biomedical devices.
This research studies osseointegration processes comparing results from explanted PEEK and Si3N4 spinal spacers. Data show that the formation of hydroxyapatite on silicon nitride bio-ceramic surfaces happens with a peculiar mechanism inside the human body. Silicon and nitrogen were incorporated inside the bony tissue structure allowing the developing of off-stoichiometric bony apatite and stimulating progenitor cell differentiation/osteoblastic activity. Silicon and nitrogen ions released from the Si3N4 surface were detected through combined histologic analyses, Raman microspectroscopy, Fourier-transform-infrared, and X-ray photoelectron spectroscopies.</description><subject>Apatite</subject><subject>Biocompatibility</subject><subject>Biological activity</subject><subject>Biomedical materials</subject><subject>Biosensors</subject><subject>Bone healing</subject><subject>Cell differentiation</subject><subject>Crystallography</subject><subject>Fourier Transform Infrared Spectroscopy</subject><subject>Fourier transforms</subject><subject>Human behavior</subject><subject>Hydroxyapatite</subject><subject>Infrared analysis</subject><subject>Mesenchyme</subject><subject>Nitrogen</subject><subject>Nitrogen compounds</subject><subject>Nitrogen ions</subject><subject>Osseointegration</subject><subject>Osteoblastogenesis</subject><subject>Osteoblasts</subject><subject>Osteosarcoma</subject><subject>PEEK</subject><subject>Polyether ether ketones</subject><subject>Progenitor cells</subject><subject>Raman micro-spectroscopy</subject><subject>Silicic acid</subject><subject>Silicon</subject><subject>Silicon nitride</subject><subject>Surface chemistry</subject><subject>Tissue engineering</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMo-PkPXBTcuGlN0rRJN4IM6giiC3Ud3qSvktppxiQd8d-boa5cuHpvcc6Fewk5Z7RglNVXfQEmrqwrOGWyoE1BS7VHjpiSKpdVrfbTLwXPJa3ZITkOoaeJYFwdEVhOaxgzFyK61QAhhuzdu68sehiDjdaNMGQv9uopgw1EGzGzY_Y5WfMxfM-WHSO-e4jYJq58EplBv7UmaXYM6OMpOehgCHj2e0_I293t62KZPz7fPyxuHnMjyjLmHFedqDsoBaJoWjAKoIaGCtNJlJynAoy1IA2joqOiZoZXrTANrblRvCrLE3I55268-5wwRL22weAwwIhuCpo1okopSqiEXvxBezf51HRHKSqrSkqaKDFTxrsQPHZ64-0a_LdmVO92172ed9e73TVtdFo1adezhqns1qLXwVgcDbbWo4m6dfb_gB8EmI32</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Pezzotti, Giuseppe</creator><creator>Oba, Naoki</creator><creator>Zhu, Wenliang</creator><creator>Marin, Elia</creator><creator>Rondinella, Alfredo</creator><creator>Boschetto, Francesco</creator><creator>McEntire, Bryan</creator><creator>Yamamoto, Kengo</creator><creator>Bal, B. Sonny</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201712</creationdate><title>Human osteoblasts grow transitional Si/N apatite in quickly osteointegrated Si3N4 cervical insert</title><author>Pezzotti, Giuseppe ; Oba, Naoki ; Zhu, Wenliang ; Marin, Elia ; Rondinella, Alfredo ; Boschetto, Francesco ; McEntire, Bryan ; Yamamoto, Kengo ; Bal, B. Sonny</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-2ebf46fa34ee49dac8aa6a904cf7e72217411da7c104f0461c25d4c9062c82533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Apatite</topic><topic>Biocompatibility</topic><topic>Biological activity</topic><topic>Biomedical materials</topic><topic>Biosensors</topic><topic>Bone healing</topic><topic>Cell differentiation</topic><topic>Crystallography</topic><topic>Fourier Transform Infrared Spectroscopy</topic><topic>Fourier transforms</topic><topic>Human behavior</topic><topic>Hydroxyapatite</topic><topic>Infrared analysis</topic><topic>Mesenchyme</topic><topic>Nitrogen</topic><topic>Nitrogen compounds</topic><topic>Nitrogen ions</topic><topic>Osseointegration</topic><topic>Osteoblastogenesis</topic><topic>Osteoblasts</topic><topic>Osteosarcoma</topic><topic>PEEK</topic><topic>Polyether ether ketones</topic><topic>Progenitor cells</topic><topic>Raman micro-spectroscopy</topic><topic>Silicic acid</topic><topic>Silicon</topic><topic>Silicon nitride</topic><topic>Surface chemistry</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pezzotti, Giuseppe</creatorcontrib><creatorcontrib>Oba, Naoki</creatorcontrib><creatorcontrib>Zhu, Wenliang</creatorcontrib><creatorcontrib>Marin, Elia</creatorcontrib><creatorcontrib>Rondinella, Alfredo</creatorcontrib><creatorcontrib>Boschetto, Francesco</creatorcontrib><creatorcontrib>McEntire, Bryan</creatorcontrib><creatorcontrib>Yamamoto, Kengo</creatorcontrib><creatorcontrib>Bal, B. Sonny</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pezzotti, Giuseppe</au><au>Oba, Naoki</au><au>Zhu, Wenliang</au><au>Marin, Elia</au><au>Rondinella, Alfredo</au><au>Boschetto, Francesco</au><au>McEntire, Bryan</au><au>Yamamoto, Kengo</au><au>Bal, B. Sonny</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human osteoblasts grow transitional Si/N apatite in quickly osteointegrated Si3N4 cervical insert</atitle><jtitle>Acta biomaterialia</jtitle><date>2017-12</date><risdate>2017</risdate><volume>64</volume><spage>411</spage><epage>420</epage><pages>411-420</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>[Display omitted]
Silicon nitride (Si3N4) ceramics possesses surface chemistry that accelerates bone repair, as previously established by in vitro experiments using both osteosarcoma and mesenchymal cells. The release of silicic acid and nitrogen compounds from the surface Si3N4 enhanced in vitro cellular activity. The results of this study demonstrate for the first time that the osseointegration behavior previously observed is operative with a peculiar chemistry within the human milieu. Si and N elements stimulated progenitor cell differentiation and osteoblastic activity, which ultimately resulted in accelerated bone ingrowth. At the molecular scale, insight into the effect of silicon and nitrogen ions released from the Si3N4 surface was obtained through combined histomorphometric analyses, Raman, Fourier-transform-infrared, and X-ray photoelectron spectroscopies. Identical analyses conducted on a polyetheretherketone (PEEK) spinal explant showed no chemical changes and a lower propensity for osteogenic activity. Silicon and nitrogen are key elements in stimulating cells to generate bony apatite with crystallographic imperfections, leading to enhanced bioactivity of Si3N4 biomedical devices.
This research studies osseointegration processes comparing results from explanted PEEK and Si3N4 spinal spacers. Data show that the formation of hydroxyapatite on silicon nitride bio-ceramic surfaces happens with a peculiar mechanism inside the human body. Silicon and nitrogen were incorporated inside the bony tissue structure allowing the developing of off-stoichiometric bony apatite and stimulating progenitor cell differentiation/osteoblastic activity. Silicon and nitrogen ions released from the Si3N4 surface were detected through combined histologic analyses, Raman microspectroscopy, Fourier-transform-infrared, and X-ray photoelectron spectroscopies.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actbio.2017.09.038</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2017-12, Vol.64, p.411-420 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_1945217848 |
source | Elsevier ScienceDirect Journals |
subjects | Apatite Biocompatibility Biological activity Biomedical materials Biosensors Bone healing Cell differentiation Crystallography Fourier Transform Infrared Spectroscopy Fourier transforms Human behavior Hydroxyapatite Infrared analysis Mesenchyme Nitrogen Nitrogen compounds Nitrogen ions Osseointegration Osteoblastogenesis Osteoblasts Osteosarcoma PEEK Polyether ether ketones Progenitor cells Raman micro-spectroscopy Silicic acid Silicon Silicon nitride Surface chemistry Tissue engineering |
title | Human osteoblasts grow transitional Si/N apatite in quickly osteointegrated Si3N4 cervical insert |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A03%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20osteoblasts%20grow%20transitional%20Si/N%20apatite%20in%20quickly%20osteointegrated%20Si3N4%20cervical%20insert&rft.jtitle=Acta%20biomaterialia&rft.au=Pezzotti,%20Giuseppe&rft.date=2017-12&rft.volume=64&rft.spage=411&rft.epage=420&rft.pages=411-420&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2017.09.038&rft_dat=%3Cproquest_cross%3E1980755770%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1980755770&rft_id=info:pmid/&rft_els_id=S1742706117306104&rfr_iscdi=true |