Diagonal Fisher linear discriminant analysis for efficient face recognition

In this paper, a novel subspace method called diagonal Fisher linear discriminant analysis (DiaFLD) is proposed for face recognition. Unlike conventional principal component analysis and FLD, DiaFLD directly seeks the optimal projection vectors from diagonal face images without image-to-vector trans...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) 2006-08, Vol.69 (13), p.1711-1716
Hauptverfasser: Noushath, S., Hemantha Kumar, G., Shivakumara, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1716
container_issue 13
container_start_page 1711
container_title Neurocomputing (Amsterdam)
container_volume 69
creator Noushath, S.
Hemantha Kumar, G.
Shivakumara, P.
description In this paper, a novel subspace method called diagonal Fisher linear discriminant analysis (DiaFLD) is proposed for face recognition. Unlike conventional principal component analysis and FLD, DiaFLD directly seeks the optimal projection vectors from diagonal face images without image-to-vector transformation. The advantage of the DiaFLD method over the standard 2-dimensional FLD (2DFLD) method is, the former seeks optimal projection vectors by interlacing both row and column information of images while the latter seeks the optimal projection vectors by using only row information of images. Our test results show that the DiaFLD method is superior to standard 2DFLD method and some existing well-known methods.
doi_str_mv 10.1016/j.neucom.2006.01.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19444963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231206000877</els_id><sourcerecordid>19444963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-65e7d7891a2e36a0dd47e01189a5c535f6c033e7be9ca589d6b10949ffa36ec53</originalsourceid><addsrcrecordid>eNp9UMFKAzEUDKJgrf6Bhz152zUv2c1uLoJUq2LBi55Dmn2pKdukJlvBvzdlPQsDD96bGd4MIddAK6AgbreVx4MJu4pRKioKGeyEzKBrWdmxTpySGZWsKRkHdk4uUtpSCi0wOSOvD05vgtdDsXTpE2MxOI86Fr1LJrqd89qPhc73n-RSYUMs0FpnHOa11QaLiCZsvBtd8JfkzOoh4dXfnJOP5eP74rlcvT29LO5XpeG8HUvRYNu3nQTNkAtN-75ukQJ0Ujem4Y0VhnKO7Rql0U0ne7EGKmtpreYCM2NObibffQxfB0yj2uVvcRi0x3BICmRd11LwTKwnookhpYhW7XMmHX8UUHVsTm3V1Jw6NqcoZLAsu5tkmEN8O4wqHQMb7F1OO6o-uP8NfgGXnXns</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19444963</pqid></control><display><type>article</type><title>Diagonal Fisher linear discriminant analysis for efficient face recognition</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Noushath, S. ; Hemantha Kumar, G. ; Shivakumara, P.</creator><creatorcontrib>Noushath, S. ; Hemantha Kumar, G. ; Shivakumara, P.</creatorcontrib><description>In this paper, a novel subspace method called diagonal Fisher linear discriminant analysis (DiaFLD) is proposed for face recognition. Unlike conventional principal component analysis and FLD, DiaFLD directly seeks the optimal projection vectors from diagonal face images without image-to-vector transformation. The advantage of the DiaFLD method over the standard 2-dimensional FLD (2DFLD) method is, the former seeks optimal projection vectors by interlacing both row and column information of images while the latter seeks the optimal projection vectors by using only row information of images. Our test results show that the DiaFLD method is superior to standard 2DFLD method and some existing well-known methods.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2006.01.012</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>2-Dimensional FLD ; 2-Dimensional PCA ; Diagonal FLD ; Face recognition ; Fisher linear discriminant analysis (FLD) ; Object recognition ; Principal component analysis (PCA)</subject><ispartof>Neurocomputing (Amsterdam), 2006-08, Vol.69 (13), p.1711-1716</ispartof><rights>2006 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-65e7d7891a2e36a0dd47e01189a5c535f6c033e7be9ca589d6b10949ffa36ec53</citedby><cites>FETCH-LOGICAL-c337t-65e7d7891a2e36a0dd47e01189a5c535f6c033e7be9ca589d6b10949ffa36ec53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neucom.2006.01.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Noushath, S.</creatorcontrib><creatorcontrib>Hemantha Kumar, G.</creatorcontrib><creatorcontrib>Shivakumara, P.</creatorcontrib><title>Diagonal Fisher linear discriminant analysis for efficient face recognition</title><title>Neurocomputing (Amsterdam)</title><description>In this paper, a novel subspace method called diagonal Fisher linear discriminant analysis (DiaFLD) is proposed for face recognition. Unlike conventional principal component analysis and FLD, DiaFLD directly seeks the optimal projection vectors from diagonal face images without image-to-vector transformation. The advantage of the DiaFLD method over the standard 2-dimensional FLD (2DFLD) method is, the former seeks optimal projection vectors by interlacing both row and column information of images while the latter seeks the optimal projection vectors by using only row information of images. Our test results show that the DiaFLD method is superior to standard 2DFLD method and some existing well-known methods.</description><subject>2-Dimensional FLD</subject><subject>2-Dimensional PCA</subject><subject>Diagonal FLD</subject><subject>Face recognition</subject><subject>Fisher linear discriminant analysis (FLD)</subject><subject>Object recognition</subject><subject>Principal component analysis (PCA)</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKAzEUDKJgrf6Bhz152zUv2c1uLoJUq2LBi55Dmn2pKdukJlvBvzdlPQsDD96bGd4MIddAK6AgbreVx4MJu4pRKioKGeyEzKBrWdmxTpySGZWsKRkHdk4uUtpSCi0wOSOvD05vgtdDsXTpE2MxOI86Fr1LJrqd89qPhc73n-RSYUMs0FpnHOa11QaLiCZsvBtd8JfkzOoh4dXfnJOP5eP74rlcvT29LO5XpeG8HUvRYNu3nQTNkAtN-75ukQJ0Ujem4Y0VhnKO7Rql0U0ne7EGKmtpreYCM2NObibffQxfB0yj2uVvcRi0x3BICmRd11LwTKwnookhpYhW7XMmHX8UUHVsTm3V1Jw6NqcoZLAsu5tkmEN8O4wqHQMb7F1OO6o-uP8NfgGXnXns</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Noushath, S.</creator><creator>Hemantha Kumar, G.</creator><creator>Shivakumara, P.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20060801</creationdate><title>Diagonal Fisher linear discriminant analysis for efficient face recognition</title><author>Noushath, S. ; Hemantha Kumar, G. ; Shivakumara, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-65e7d7891a2e36a0dd47e01189a5c535f6c033e7be9ca589d6b10949ffa36ec53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>2-Dimensional FLD</topic><topic>2-Dimensional PCA</topic><topic>Diagonal FLD</topic><topic>Face recognition</topic><topic>Fisher linear discriminant analysis (FLD)</topic><topic>Object recognition</topic><topic>Principal component analysis (PCA)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noushath, S.</creatorcontrib><creatorcontrib>Hemantha Kumar, G.</creatorcontrib><creatorcontrib>Shivakumara, P.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noushath, S.</au><au>Hemantha Kumar, G.</au><au>Shivakumara, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diagonal Fisher linear discriminant analysis for efficient face recognition</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2006-08-01</date><risdate>2006</risdate><volume>69</volume><issue>13</issue><spage>1711</spage><epage>1716</epage><pages>1711-1716</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>In this paper, a novel subspace method called diagonal Fisher linear discriminant analysis (DiaFLD) is proposed for face recognition. Unlike conventional principal component analysis and FLD, DiaFLD directly seeks the optimal projection vectors from diagonal face images without image-to-vector transformation. The advantage of the DiaFLD method over the standard 2-dimensional FLD (2DFLD) method is, the former seeks optimal projection vectors by interlacing both row and column information of images while the latter seeks the optimal projection vectors by using only row information of images. Our test results show that the DiaFLD method is superior to standard 2DFLD method and some existing well-known methods.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2006.01.012</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-2312
ispartof Neurocomputing (Amsterdam), 2006-08, Vol.69 (13), p.1711-1716
issn 0925-2312
1872-8286
language eng
recordid cdi_proquest_miscellaneous_19444963
source Elsevier ScienceDirect Journals Complete
subjects 2-Dimensional FLD
2-Dimensional PCA
Diagonal FLD
Face recognition
Fisher linear discriminant analysis (FLD)
Object recognition
Principal component analysis (PCA)
title Diagonal Fisher linear discriminant analysis for efficient face recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A19%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diagonal%20Fisher%20linear%20discriminant%20analysis%20for%20efficient%20face%20recognition&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Noushath,%20S.&rft.date=2006-08-01&rft.volume=69&rft.issue=13&rft.spage=1711&rft.epage=1716&rft.pages=1711-1716&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2006.01.012&rft_dat=%3Cproquest_cross%3E19444963%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19444963&rft_id=info:pmid/&rft_els_id=S0925231206000877&rfr_iscdi=true