On methods for gene function scoring as a means of facilitating the interpretation of microarray results

As gene annotation databases continue to evolve and improve, it has become feasible to incorporate the functional and pathway information about genes, available in these databases into the analysis of gene expression data, for a better understanding of the underlying mechanisms. A few methods have b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational biology 2006-04, Vol.13 (3), p.798-809
Hauptverfasser: Raghavan, N, Amaratunga, D, Cabrera, J, Nie, A, Qin, J, McMillian, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 809
container_issue 3
container_start_page 798
container_title Journal of computational biology
container_volume 13
creator Raghavan, N
Amaratunga, D
Cabrera, J
Nie, A
Qin, J
McMillian, M
description As gene annotation databases continue to evolve and improve, it has become feasible to incorporate the functional and pathway information about genes, available in these databases into the analysis of gene expression data, for a better understanding of the underlying mechanisms. A few methods have been proposed in the literature to formally convert individual gene results into gene function results. In this paper, we will compare the various methods, propose and examine some new ones, and offer a structured approach to incorporating gene function or pathway information into the analysis of expression data. We study the performance of the various methods and also compare them on real data, using a case study from the toxicogenomics area. Our results show that the approaches based on gene function scores yield a different, and functionally more interpretable, array of genes than methods that rely solely on individual gene scores. They also suggest that functional class scoring methods appear to perform better and more consistently than overrepresentation analysis and distributional score methods.
doi_str_mv 10.1089/cmb.2006.13.798
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19444692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19444692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-160370b5805615c239b39bd6f0db65935de18e98c0466c871ab6bf235a541e753</originalsourceid><addsrcrecordid>eNpFkEtrwzAMgM3YWLtu592GT7slteNYTo6j7AWFXrazcRy79cijs51D__0cWhgIJKRPQnwIPVKSU1LVa903eUEI5JTloq6u0JJyLrIKAK5TTQAyXgixQHch_BBCGRBxixYUBAFRwBIddgPuTTyMbcB29HhvBoPtNOjoxgEHPXo37LEKWCVMDQGPFlulXeeiivMoHgx2QzT-6M3cSlsJ6Z32o_JenbA3YepiuEc3VnXBPFzyCn2_vX5tPrLt7v1z87LNNKuLmFEgTJCGV4QD5bpgdZOiBUvaBnjNeGtoZepKkxJAV4KqBhpbMK54SY3gbIWez3ePfvydTIiyd0GbrlODGacgaV2WJdRFAtdnMH0agjdWHr3rlT9JSuQsVya5cpYrKZNJbtp4upyemt60__zFJvsD4hB2SQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19444692</pqid></control><display><type>article</type><title>On methods for gene function scoring as a means of facilitating the interpretation of microarray results</title><source>Mary Ann Liebert Online Subscription</source><source>MEDLINE</source><creator>Raghavan, N ; Amaratunga, D ; Cabrera, J ; Nie, A ; Qin, J ; McMillian, M</creator><creatorcontrib>Raghavan, N ; Amaratunga, D ; Cabrera, J ; Nie, A ; Qin, J ; McMillian, M</creatorcontrib><description>As gene annotation databases continue to evolve and improve, it has become feasible to incorporate the functional and pathway information about genes, available in these databases into the analysis of gene expression data, for a better understanding of the underlying mechanisms. A few methods have been proposed in the literature to formally convert individual gene results into gene function results. In this paper, we will compare the various methods, propose and examine some new ones, and offer a structured approach to incorporating gene function or pathway information into the analysis of expression data. We study the performance of the various methods and also compare them on real data, using a case study from the toxicogenomics area. Our results show that the approaches based on gene function scores yield a different, and functionally more interpretable, array of genes than methods that rely solely on individual gene scores. They also suggest that functional class scoring methods appear to perform better and more consistently than overrepresentation analysis and distributional score methods.</description><identifier>ISSN: 1066-5277</identifier><identifier>EISSN: 1557-8666</identifier><identifier>DOI: 10.1089/cmb.2006.13.798</identifier><identifier>PMID: 16706726</identifier><language>eng</language><publisher>United States</publisher><subject>Databases, Genetic ; Gene Expression ; Oligonucleotide Array Sequence Analysis - methods ; Research Design ; Toxicogenetics</subject><ispartof>Journal of computational biology, 2006-04, Vol.13 (3), p.798-809</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-160370b5805615c239b39bd6f0db65935de18e98c0466c871ab6bf235a541e753</citedby><cites>FETCH-LOGICAL-c392t-160370b5805615c239b39bd6f0db65935de18e98c0466c871ab6bf235a541e753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3042,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16706726$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Raghavan, N</creatorcontrib><creatorcontrib>Amaratunga, D</creatorcontrib><creatorcontrib>Cabrera, J</creatorcontrib><creatorcontrib>Nie, A</creatorcontrib><creatorcontrib>Qin, J</creatorcontrib><creatorcontrib>McMillian, M</creatorcontrib><title>On methods for gene function scoring as a means of facilitating the interpretation of microarray results</title><title>Journal of computational biology</title><addtitle>J Comput Biol</addtitle><description>As gene annotation databases continue to evolve and improve, it has become feasible to incorporate the functional and pathway information about genes, available in these databases into the analysis of gene expression data, for a better understanding of the underlying mechanisms. A few methods have been proposed in the literature to formally convert individual gene results into gene function results. In this paper, we will compare the various methods, propose and examine some new ones, and offer a structured approach to incorporating gene function or pathway information into the analysis of expression data. We study the performance of the various methods and also compare them on real data, using a case study from the toxicogenomics area. Our results show that the approaches based on gene function scores yield a different, and functionally more interpretable, array of genes than methods that rely solely on individual gene scores. They also suggest that functional class scoring methods appear to perform better and more consistently than overrepresentation analysis and distributional score methods.</description><subject>Databases, Genetic</subject><subject>Gene Expression</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Research Design</subject><subject>Toxicogenetics</subject><issn>1066-5277</issn><issn>1557-8666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkEtrwzAMgM3YWLtu592GT7slteNYTo6j7AWFXrazcRy79cijs51D__0cWhgIJKRPQnwIPVKSU1LVa903eUEI5JTloq6u0JJyLrIKAK5TTQAyXgixQHch_BBCGRBxixYUBAFRwBIddgPuTTyMbcB29HhvBoPtNOjoxgEHPXo37LEKWCVMDQGPFlulXeeiivMoHgx2QzT-6M3cSlsJ6Z32o_JenbA3YepiuEc3VnXBPFzyCn2_vX5tPrLt7v1z87LNNKuLmFEgTJCGV4QD5bpgdZOiBUvaBnjNeGtoZepKkxJAV4KqBhpbMK54SY3gbIWez3ePfvydTIiyd0GbrlODGacgaV2WJdRFAtdnMH0agjdWHr3rlT9JSuQsVya5cpYrKZNJbtp4upyemt60__zFJvsD4hB2SQ</recordid><startdate>200604</startdate><enddate>200604</enddate><creator>Raghavan, N</creator><creator>Amaratunga, D</creator><creator>Cabrera, J</creator><creator>Nie, A</creator><creator>Qin, J</creator><creator>McMillian, M</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>200604</creationdate><title>On methods for gene function scoring as a means of facilitating the interpretation of microarray results</title><author>Raghavan, N ; Amaratunga, D ; Cabrera, J ; Nie, A ; Qin, J ; McMillian, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-160370b5805615c239b39bd6f0db65935de18e98c0466c871ab6bf235a541e753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Databases, Genetic</topic><topic>Gene Expression</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Research Design</topic><topic>Toxicogenetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raghavan, N</creatorcontrib><creatorcontrib>Amaratunga, D</creatorcontrib><creatorcontrib>Cabrera, J</creatorcontrib><creatorcontrib>Nie, A</creatorcontrib><creatorcontrib>Qin, J</creatorcontrib><creatorcontrib>McMillian, M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raghavan, N</au><au>Amaratunga, D</au><au>Cabrera, J</au><au>Nie, A</au><au>Qin, J</au><au>McMillian, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On methods for gene function scoring as a means of facilitating the interpretation of microarray results</atitle><jtitle>Journal of computational biology</jtitle><addtitle>J Comput Biol</addtitle><date>2006-04</date><risdate>2006</risdate><volume>13</volume><issue>3</issue><spage>798</spage><epage>809</epage><pages>798-809</pages><issn>1066-5277</issn><eissn>1557-8666</eissn><abstract>As gene annotation databases continue to evolve and improve, it has become feasible to incorporate the functional and pathway information about genes, available in these databases into the analysis of gene expression data, for a better understanding of the underlying mechanisms. A few methods have been proposed in the literature to formally convert individual gene results into gene function results. In this paper, we will compare the various methods, propose and examine some new ones, and offer a structured approach to incorporating gene function or pathway information into the analysis of expression data. We study the performance of the various methods and also compare them on real data, using a case study from the toxicogenomics area. Our results show that the approaches based on gene function scores yield a different, and functionally more interpretable, array of genes than methods that rely solely on individual gene scores. They also suggest that functional class scoring methods appear to perform better and more consistently than overrepresentation analysis and distributional score methods.</abstract><cop>United States</cop><pmid>16706726</pmid><doi>10.1089/cmb.2006.13.798</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1066-5277
ispartof Journal of computational biology, 2006-04, Vol.13 (3), p.798-809
issn 1066-5277
1557-8666
language eng
recordid cdi_proquest_miscellaneous_19444692
source Mary Ann Liebert Online Subscription; MEDLINE
subjects Databases, Genetic
Gene Expression
Oligonucleotide Array Sequence Analysis - methods
Research Design
Toxicogenetics
title On methods for gene function scoring as a means of facilitating the interpretation of microarray results
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A26%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20methods%20for%20gene%20function%20scoring%20as%20a%20means%20of%20facilitating%20the%20interpretation%20of%20microarray%20results&rft.jtitle=Journal%20of%20computational%20biology&rft.au=Raghavan,%20N&rft.date=2006-04&rft.volume=13&rft.issue=3&rft.spage=798&rft.epage=809&rft.pages=798-809&rft.issn=1066-5277&rft.eissn=1557-8666&rft_id=info:doi/10.1089/cmb.2006.13.798&rft_dat=%3Cproquest_cross%3E19444692%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19444692&rft_id=info:pmid/16706726&rfr_iscdi=true