Abiotic factors controlling bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons in soil: Putting together a bigger picture

The bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in soil underpin the risk assessment of contaminated land with these contaminants. Despite a significant volume of research conducted in the past few decades, comprehensive understanding of the factors controlling th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2018-02, Vol.613-614, p.1140-1153
Hauptverfasser: Yu, Linbo, Duan, Luchun, Naidu, Ravi, Semple, Kirk T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in soil underpin the risk assessment of contaminated land with these contaminants. Despite a significant volume of research conducted in the past few decades, comprehensive understanding of the factors controlling the behaviour of soil PAHs and a set of descriptive soil parameters to explain variations in PAH bioavailability and bioaccessibility are still lacking. This review focuses on the role of source materials on bioavailability and bioaccessibility of soil PAHs, which is often overlooked, along with other abiotic factors including contaminant concentration and mixture, soil composition and properties, as well as environmental factors. It also takes into consideration the implications of different types of risk assessment (ecological and human health) on bioavailability and bioaccessibility of PAHs in soil. We recommend that future research should (1) account for the effects of source materials on bioavailability and bioaccessibility of soil PAHs; (2) adopt non-disruptive methods to analyse soil components controlling PAH sequestration; (3) integrate both natural organic matter (NOM) and xenobiotic organic matter (XOM) while evaluating the influences of soil organic matter (SOM) on the behaviour of PAHs; and (4) consider the dissimilar desorption scenarios in ecological risk assessment and human health risk assessment while assessing PAH bioavailability and bioaccessibility. [Display omitted] •Source materials are important in controlling PAH fate and bioavailability.•Both xenobiotic and natural SOM are important in controlling PAH bioavailability.•Non-disruptive methods are more appropriate to characterize SOM.•Different desorption scenarios affect bioavailability/bioaccessibility measurement.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2017.09.025