Identification of Distinct Functional Microstructural Domains Controlling C Storage in Soil
The physical, chemical, and biological processes forming the backbone of important soil functions (e.g., carbon sequestration, nutrient and contaminant storage, and water transport) take place at reactive interfaces of soil particles and pores. The accessibility of these interfaces is determined by...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2017-11, Vol.51 (21), p.12182-12189 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12189 |
---|---|
container_issue | 21 |
container_start_page | 12182 |
container_title | Environmental science & technology |
container_volume | 51 |
creator | Steffens, Markus Rogge, Derek M. Mueller, Carsten W. Höschen, Carmen Lugmeier, Johann Kölbl, Angelika Kögel-Knabner, Ingrid |
description | The physical, chemical, and biological processes forming the backbone of important soil functions (e.g., carbon sequestration, nutrient and contaminant storage, and water transport) take place at reactive interfaces of soil particles and pores. The accessibility of these interfaces is determined by the spatial arrangement of the solid mineral and organic soil components, and the resulting pore system. Despite the development and application of novel imaging techniques operating at the micrometer and even nanometer scale, the microstructure of soils is still considered as a random arrangement of mineral and organic components. Using nanoscale secondary ion mass spectroscopy (NanoSIMS) and a novel digital image processing routine adapted from remote sensing (consisting of image preprocessing, endmember extraction, and a supervised classification), we extensively analyzed the spatial distribution of secondary ions that are characteristic of mineral and organic soil components on the submicrometer scale in an intact soil aggregate (40 measurements, each covering an area of 30 μm × 30 μm with a lateral resolution of 100 nm × 100 nm). We were surprised that the 40 spatially independent measurements clustered in just two complementary types of micrometer-sized domains. Each domain is characterized by a microarchitecture built of a definite mineral assemblage with various organic matter forms and a specific pore system, each fulfilling different functions in soil. Our results demonstrate that these microarchitectures form due to self-organization of the manifold mineral and organic soil components to distinct mineral assemblages, which are in turn stabilized by biophysical feedback mechanisms acting through pore characteristics and microbial accessibility. These microdomains are the smallest units in soil that fulfill specific functionalities. |
doi_str_mv | 10.1021/acs.est.7b03715 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1944435287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1985135511</sourcerecordid><originalsourceid>FETCH-LOGICAL-a398t-44c905668f5fdf9e796238063a8f89c2f70433721c91ccf70663bac989d4cb603</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMobk7P3iTgRZBuSdO0yVE6p4OJhykIHkqaJSOja2aSHvz3pmwqCF4SvvC8b_geAC4xGmOU4omQfqx8GBc1IgWmR2CIaYoSyig-BkOEMEk4yd8G4Mz7DUIoJYidgkHKOM0oLobgfb5SbTDaSBGMbaHVcGp8MK0McNbFMz6KBj4Z6awPrpOhc3Ge2q0wrYelbYOzTWPaNSzhMlgn1gqaFi6tac7BiRaNVxeHewReZ_cv5WOyeH6Yl3eLRBDOQpJlkiOa50xTvdJcFTxPCUM5EUwzLlNdoIyQIsWSYynjlOekFpIzvspknSMyAjf73p2zH13UUW2Nl6ppRKts5yvMsywjNGVFRK__oBvbubhhT0VphFKMIzXZU_3S3ild7ZzZCvdZYVT13qvoverTB-8xcXXo7eqtWv3w36IjcLsH-uTvn__UfQG_M41q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1985135511</pqid></control><display><type>article</type><title>Identification of Distinct Functional Microstructural Domains Controlling C Storage in Soil</title><source>MEDLINE</source><source>ACS Publications</source><creator>Steffens, Markus ; Rogge, Derek M. ; Mueller, Carsten W. ; Höschen, Carmen ; Lugmeier, Johann ; Kölbl, Angelika ; Kögel-Knabner, Ingrid</creator><creatorcontrib>Steffens, Markus ; Rogge, Derek M. ; Mueller, Carsten W. ; Höschen, Carmen ; Lugmeier, Johann ; Kölbl, Angelika ; Kögel-Knabner, Ingrid</creatorcontrib><description>The physical, chemical, and biological processes forming the backbone of important soil functions (e.g., carbon sequestration, nutrient and contaminant storage, and water transport) take place at reactive interfaces of soil particles and pores. The accessibility of these interfaces is determined by the spatial arrangement of the solid mineral and organic soil components, and the resulting pore system. Despite the development and application of novel imaging techniques operating at the micrometer and even nanometer scale, the microstructure of soils is still considered as a random arrangement of mineral and organic components. Using nanoscale secondary ion mass spectroscopy (NanoSIMS) and a novel digital image processing routine adapted from remote sensing (consisting of image preprocessing, endmember extraction, and a supervised classification), we extensively analyzed the spatial distribution of secondary ions that are characteristic of mineral and organic soil components on the submicrometer scale in an intact soil aggregate (40 measurements, each covering an area of 30 μm × 30 μm with a lateral resolution of 100 nm × 100 nm). We were surprised that the 40 spatially independent measurements clustered in just two complementary types of micrometer-sized domains. Each domain is characterized by a microarchitecture built of a definite mineral assemblage with various organic matter forms and a specific pore system, each fulfilling different functions in soil. Our results demonstrate that these microarchitectures form due to self-organization of the manifold mineral and organic soil components to distinct mineral assemblages, which are in turn stabilized by biophysical feedback mechanisms acting through pore characteristics and microbial accessibility. These microdomains are the smallest units in soil that fulfill specific functionalities.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.7b03715</identifier><identifier>PMID: 28954517</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Accessibility ; Biological activity ; Carbon ; Carbon Sequestration ; Computer architecture ; Contaminants ; Digital imaging ; Image classification ; Image processing ; Imaging techniques ; Interfaces ; Mass spectroscopy ; Microorganisms ; Microstructure ; Minerals ; Nutrient transport ; Organic matter ; Organic soils ; Preprocessing ; Remote sensing ; Secondary ion mass spectroscopy ; Soil ; Soil chemistry ; Soil contamination ; Soil stabilization ; Soils ; Spatial distribution ; Spectrometry, Mass, Secondary Ion ; Storage ; Water pollution ; Water transport</subject><ispartof>Environmental science & technology, 2017-11, Vol.51 (21), p.12182-12189</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 7, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a398t-44c905668f5fdf9e796238063a8f89c2f70433721c91ccf70663bac989d4cb603</citedby><cites>FETCH-LOGICAL-a398t-44c905668f5fdf9e796238063a8f89c2f70433721c91ccf70663bac989d4cb603</cites><orcidid>0000-0002-2593-0971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.7b03715$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.7b03715$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28954517$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Steffens, Markus</creatorcontrib><creatorcontrib>Rogge, Derek M.</creatorcontrib><creatorcontrib>Mueller, Carsten W.</creatorcontrib><creatorcontrib>Höschen, Carmen</creatorcontrib><creatorcontrib>Lugmeier, Johann</creatorcontrib><creatorcontrib>Kölbl, Angelika</creatorcontrib><creatorcontrib>Kögel-Knabner, Ingrid</creatorcontrib><title>Identification of Distinct Functional Microstructural Domains Controlling C Storage in Soil</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The physical, chemical, and biological processes forming the backbone of important soil functions (e.g., carbon sequestration, nutrient and contaminant storage, and water transport) take place at reactive interfaces of soil particles and pores. The accessibility of these interfaces is determined by the spatial arrangement of the solid mineral and organic soil components, and the resulting pore system. Despite the development and application of novel imaging techniques operating at the micrometer and even nanometer scale, the microstructure of soils is still considered as a random arrangement of mineral and organic components. Using nanoscale secondary ion mass spectroscopy (NanoSIMS) and a novel digital image processing routine adapted from remote sensing (consisting of image preprocessing, endmember extraction, and a supervised classification), we extensively analyzed the spatial distribution of secondary ions that are characteristic of mineral and organic soil components on the submicrometer scale in an intact soil aggregate (40 measurements, each covering an area of 30 μm × 30 μm with a lateral resolution of 100 nm × 100 nm). We were surprised that the 40 spatially independent measurements clustered in just two complementary types of micrometer-sized domains. Each domain is characterized by a microarchitecture built of a definite mineral assemblage with various organic matter forms and a specific pore system, each fulfilling different functions in soil. Our results demonstrate that these microarchitectures form due to self-organization of the manifold mineral and organic soil components to distinct mineral assemblages, which are in turn stabilized by biophysical feedback mechanisms acting through pore characteristics and microbial accessibility. These microdomains are the smallest units in soil that fulfill specific functionalities.</description><subject>Accessibility</subject><subject>Biological activity</subject><subject>Carbon</subject><subject>Carbon Sequestration</subject><subject>Computer architecture</subject><subject>Contaminants</subject><subject>Digital imaging</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Imaging techniques</subject><subject>Interfaces</subject><subject>Mass spectroscopy</subject><subject>Microorganisms</subject><subject>Microstructure</subject><subject>Minerals</subject><subject>Nutrient transport</subject><subject>Organic matter</subject><subject>Organic soils</subject><subject>Preprocessing</subject><subject>Remote sensing</subject><subject>Secondary ion mass spectroscopy</subject><subject>Soil</subject><subject>Soil chemistry</subject><subject>Soil contamination</subject><subject>Soil stabilization</subject><subject>Soils</subject><subject>Spatial distribution</subject><subject>Spectrometry, Mass, Secondary Ion</subject><subject>Storage</subject><subject>Water pollution</subject><subject>Water transport</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEFLwzAYhoMobk7P3iTgRZBuSdO0yVE6p4OJhykIHkqaJSOja2aSHvz3pmwqCF4SvvC8b_geAC4xGmOU4omQfqx8GBc1IgWmR2CIaYoSyig-BkOEMEk4yd8G4Mz7DUIoJYidgkHKOM0oLobgfb5SbTDaSBGMbaHVcGp8MK0McNbFMz6KBj4Z6awPrpOhc3Ge2q0wrYelbYOzTWPaNSzhMlgn1gqaFi6tac7BiRaNVxeHewReZ_cv5WOyeH6Yl3eLRBDOQpJlkiOa50xTvdJcFTxPCUM5EUwzLlNdoIyQIsWSYynjlOekFpIzvspknSMyAjf73p2zH13UUW2Nl6ppRKts5yvMsywjNGVFRK__oBvbubhhT0VphFKMIzXZU_3S3ild7ZzZCvdZYVT13qvoverTB-8xcXXo7eqtWv3w36IjcLsH-uTvn__UfQG_M41q</recordid><startdate>20171107</startdate><enddate>20171107</enddate><creator>Steffens, Markus</creator><creator>Rogge, Derek M.</creator><creator>Mueller, Carsten W.</creator><creator>Höschen, Carmen</creator><creator>Lugmeier, Johann</creator><creator>Kölbl, Angelika</creator><creator>Kögel-Knabner, Ingrid</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2593-0971</orcidid></search><sort><creationdate>20171107</creationdate><title>Identification of Distinct Functional Microstructural Domains Controlling C Storage in Soil</title><author>Steffens, Markus ; Rogge, Derek M. ; Mueller, Carsten W. ; Höschen, Carmen ; Lugmeier, Johann ; Kölbl, Angelika ; Kögel-Knabner, Ingrid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a398t-44c905668f5fdf9e796238063a8f89c2f70433721c91ccf70663bac989d4cb603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accessibility</topic><topic>Biological activity</topic><topic>Carbon</topic><topic>Carbon Sequestration</topic><topic>Computer architecture</topic><topic>Contaminants</topic><topic>Digital imaging</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Imaging techniques</topic><topic>Interfaces</topic><topic>Mass spectroscopy</topic><topic>Microorganisms</topic><topic>Microstructure</topic><topic>Minerals</topic><topic>Nutrient transport</topic><topic>Organic matter</topic><topic>Organic soils</topic><topic>Preprocessing</topic><topic>Remote sensing</topic><topic>Secondary ion mass spectroscopy</topic><topic>Soil</topic><topic>Soil chemistry</topic><topic>Soil contamination</topic><topic>Soil stabilization</topic><topic>Soils</topic><topic>Spatial distribution</topic><topic>Spectrometry, Mass, Secondary Ion</topic><topic>Storage</topic><topic>Water pollution</topic><topic>Water transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steffens, Markus</creatorcontrib><creatorcontrib>Rogge, Derek M.</creatorcontrib><creatorcontrib>Mueller, Carsten W.</creatorcontrib><creatorcontrib>Höschen, Carmen</creatorcontrib><creatorcontrib>Lugmeier, Johann</creatorcontrib><creatorcontrib>Kölbl, Angelika</creatorcontrib><creatorcontrib>Kögel-Knabner, Ingrid</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steffens, Markus</au><au>Rogge, Derek M.</au><au>Mueller, Carsten W.</au><au>Höschen, Carmen</au><au>Lugmeier, Johann</au><au>Kölbl, Angelika</au><au>Kögel-Knabner, Ingrid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Distinct Functional Microstructural Domains Controlling C Storage in Soil</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2017-11-07</date><risdate>2017</risdate><volume>51</volume><issue>21</issue><spage>12182</spage><epage>12189</epage><pages>12182-12189</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>The physical, chemical, and biological processes forming the backbone of important soil functions (e.g., carbon sequestration, nutrient and contaminant storage, and water transport) take place at reactive interfaces of soil particles and pores. The accessibility of these interfaces is determined by the spatial arrangement of the solid mineral and organic soil components, and the resulting pore system. Despite the development and application of novel imaging techniques operating at the micrometer and even nanometer scale, the microstructure of soils is still considered as a random arrangement of mineral and organic components. Using nanoscale secondary ion mass spectroscopy (NanoSIMS) and a novel digital image processing routine adapted from remote sensing (consisting of image preprocessing, endmember extraction, and a supervised classification), we extensively analyzed the spatial distribution of secondary ions that are characteristic of mineral and organic soil components on the submicrometer scale in an intact soil aggregate (40 measurements, each covering an area of 30 μm × 30 μm with a lateral resolution of 100 nm × 100 nm). We were surprised that the 40 spatially independent measurements clustered in just two complementary types of micrometer-sized domains. Each domain is characterized by a microarchitecture built of a definite mineral assemblage with various organic matter forms and a specific pore system, each fulfilling different functions in soil. Our results demonstrate that these microarchitectures form due to self-organization of the manifold mineral and organic soil components to distinct mineral assemblages, which are in turn stabilized by biophysical feedback mechanisms acting through pore characteristics and microbial accessibility. These microdomains are the smallest units in soil that fulfill specific functionalities.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28954517</pmid><doi>10.1021/acs.est.7b03715</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2593-0971</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2017-11, Vol.51 (21), p.12182-12189 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_1944435287 |
source | MEDLINE; ACS Publications |
subjects | Accessibility Biological activity Carbon Carbon Sequestration Computer architecture Contaminants Digital imaging Image classification Image processing Imaging techniques Interfaces Mass spectroscopy Microorganisms Microstructure Minerals Nutrient transport Organic matter Organic soils Preprocessing Remote sensing Secondary ion mass spectroscopy Soil Soil chemistry Soil contamination Soil stabilization Soils Spatial distribution Spectrometry, Mass, Secondary Ion Storage Water pollution Water transport |
title | Identification of Distinct Functional Microstructural Domains Controlling C Storage in Soil |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A29%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Distinct%20Functional%20Microstructural%20Domains%20Controlling%20C%20Storage%20in%20Soil&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Steffens,%20Markus&rft.date=2017-11-07&rft.volume=51&rft.issue=21&rft.spage=12182&rft.epage=12189&rft.pages=12182-12189&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.7b03715&rft_dat=%3Cproquest_cross%3E1985135511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1985135511&rft_id=info:pmid/28954517&rfr_iscdi=true |