A laser desorption ionisation mass spectrometry approach for high throughput metabolomics

The importance of metabolomic data in functional genomic investigations is increasingly becoming evident, as is its utility in novel biomarker discovery. We demonstrate a simple approach to the screening of metabolic information that we believe will be valuable in generating metabolomic data. Laser...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metabolomics 2005-07, Vol.1 (3), p.243-250
Hauptverfasser: Vaidyanathan, Seetharaman, Jones, Dan, Broadhurst, David I., Ellis, Joanne, Jenkins, Tudor, Dunn, Warwick B., Hayes, Andrew, Burton, Nicola, Oliver, Stephen G., Kell, Douglas B., Goodacre, Royston
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 250
container_issue 3
container_start_page 243
container_title Metabolomics
container_volume 1
creator Vaidyanathan, Seetharaman
Jones, Dan
Broadhurst, David I.
Ellis, Joanne
Jenkins, Tudor
Dunn, Warwick B.
Hayes, Andrew
Burton, Nicola
Oliver, Stephen G.
Kell, Douglas B.
Goodacre, Royston
description The importance of metabolomic data in functional genomic investigations is increasingly becoming evident, as is its utility in novel biomarker discovery. We demonstrate a simple approach to the screening of metabolic information that we believe will be valuable in generating metabolomic data. Laser desorption ionisation mass spectrometry on porous silicon was effective in detecting 22 of 30 metabolites in a mixture in the negative-ion mode and 19 of 30 metabolites in the positive-ion mode, without the employment of any prior analyte separation steps. Overall, 26 of the 30 metabolites could be covered between the positive and negative-ion modes. Although the response for the metabolites at a given concentration differed, it was possible to generate direct quantitative information for a given analyte in the mixture. This technique was subsequently used to generate metabolic footprints from cell-free supernatants and, when combined with chemometric analysis, enabled us to discriminate haploid yeast single-gene deletants (mutants). In particular, the metabolic footprint of a deletion mutant in a gene encoding a transcriptional activator (Gln3p) showed increased levels of peaks, including one corresponding to glutamate, compared to the other mutants and the wild-type strain tested, enabling its discrimination based on metabolic information.
doi_str_mv 10.1007/s11306-005-0007-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19438629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19438629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-3803da861569fb943b37ec3cf11822006d4fdee1c79c0047efecdff43382a5de3</originalsourceid><addsrcrecordid>eNpdkDtPwzAUhS0EEqXwA9gsBrbAdZyHM1YVL6kSCwxMlutcN6mSOvgmUvn3uBQxMBzdO3w6-nQYuxZwJwDKexJCQpEA5DFQJvsTNhN5KROpKjj9-1V6zi6ItgBZVpUwYx8L3hnCwGskH4ax9Tse05L5eXtDxGlAOwbf4xi-uBmG4I1tuPOBN-2m4WMT_LRphmnkETFr3_m-tXTJzpzpCK9-75y9Pz68LZ-T1evTy3KxSqwEOUYnkLVRhciLyq2rTK5liVZaJ4RKU4CizlyNKGxZ2WhdokNbO5dJqVKT1yjn7PbYG70-J6RR9y1Z7DqzQz-RFrFTFWkVwZt_4NZPYRfdtFKZqtRBZc7EEbLBEwV0eghtb8KXFqAPS-vj0jourQ9L6738BhtHc0c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884898380</pqid></control><display><type>article</type><title>A laser desorption ionisation mass spectrometry approach for high throughput metabolomics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Vaidyanathan, Seetharaman ; Jones, Dan ; Broadhurst, David I. ; Ellis, Joanne ; Jenkins, Tudor ; Dunn, Warwick B. ; Hayes, Andrew ; Burton, Nicola ; Oliver, Stephen G. ; Kell, Douglas B. ; Goodacre, Royston</creator><creatorcontrib>Vaidyanathan, Seetharaman ; Jones, Dan ; Broadhurst, David I. ; Ellis, Joanne ; Jenkins, Tudor ; Dunn, Warwick B. ; Hayes, Andrew ; Burton, Nicola ; Oliver, Stephen G. ; Kell, Douglas B. ; Goodacre, Royston</creatorcontrib><description>The importance of metabolomic data in functional genomic investigations is increasingly becoming evident, as is its utility in novel biomarker discovery. We demonstrate a simple approach to the screening of metabolic information that we believe will be valuable in generating metabolomic data. Laser desorption ionisation mass spectrometry on porous silicon was effective in detecting 22 of 30 metabolites in a mixture in the negative-ion mode and 19 of 30 metabolites in the positive-ion mode, without the employment of any prior analyte separation steps. Overall, 26 of the 30 metabolites could be covered between the positive and negative-ion modes. Although the response for the metabolites at a given concentration differed, it was possible to generate direct quantitative information for a given analyte in the mixture. This technique was subsequently used to generate metabolic footprints from cell-free supernatants and, when combined with chemometric analysis, enabled us to discriminate haploid yeast single-gene deletants (mutants). In particular, the metabolic footprint of a deletion mutant in a gene encoding a transcriptional activator (Gln3p) showed increased levels of peaks, including one corresponding to glutamate, compared to the other mutants and the wild-type strain tested, enabling its discrimination based on metabolic information.</description><identifier>ISSN: 1573-3882</identifier><identifier>EISSN: 1573-3890</identifier><identifier>DOI: 10.1007/s11306-005-0007-x</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Deletion mutant ; Desorption ; Gene deletion ; Mass spectrometry ; Mass spectroscopy ; Metabolism ; Metabolites ; Metabolomics ; Mutants ; Scientific imaging</subject><ispartof>Metabolomics, 2005-07, Vol.1 (3), p.243-250</ispartof><rights>Springer Science+Business Media, Inc. 2005.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-3803da861569fb943b37ec3cf11822006d4fdee1c79c0047efecdff43382a5de3</citedby><cites>FETCH-LOGICAL-c303t-3803da861569fb943b37ec3cf11822006d4fdee1c79c0047efecdff43382a5de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Vaidyanathan, Seetharaman</creatorcontrib><creatorcontrib>Jones, Dan</creatorcontrib><creatorcontrib>Broadhurst, David I.</creatorcontrib><creatorcontrib>Ellis, Joanne</creatorcontrib><creatorcontrib>Jenkins, Tudor</creatorcontrib><creatorcontrib>Dunn, Warwick B.</creatorcontrib><creatorcontrib>Hayes, Andrew</creatorcontrib><creatorcontrib>Burton, Nicola</creatorcontrib><creatorcontrib>Oliver, Stephen G.</creatorcontrib><creatorcontrib>Kell, Douglas B.</creatorcontrib><creatorcontrib>Goodacre, Royston</creatorcontrib><title>A laser desorption ionisation mass spectrometry approach for high throughput metabolomics</title><title>Metabolomics</title><description>The importance of metabolomic data in functional genomic investigations is increasingly becoming evident, as is its utility in novel biomarker discovery. We demonstrate a simple approach to the screening of metabolic information that we believe will be valuable in generating metabolomic data. Laser desorption ionisation mass spectrometry on porous silicon was effective in detecting 22 of 30 metabolites in a mixture in the negative-ion mode and 19 of 30 metabolites in the positive-ion mode, without the employment of any prior analyte separation steps. Overall, 26 of the 30 metabolites could be covered between the positive and negative-ion modes. Although the response for the metabolites at a given concentration differed, it was possible to generate direct quantitative information for a given analyte in the mixture. This technique was subsequently used to generate metabolic footprints from cell-free supernatants and, when combined with chemometric analysis, enabled us to discriminate haploid yeast single-gene deletants (mutants). In particular, the metabolic footprint of a deletion mutant in a gene encoding a transcriptional activator (Gln3p) showed increased levels of peaks, including one corresponding to glutamate, compared to the other mutants and the wild-type strain tested, enabling its discrimination based on metabolic information.</description><subject>Deletion mutant</subject><subject>Desorption</subject><subject>Gene deletion</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>Mutants</subject><subject>Scientific imaging</subject><issn>1573-3882</issn><issn>1573-3890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkDtPwzAUhS0EEqXwA9gsBrbAdZyHM1YVL6kSCwxMlutcN6mSOvgmUvn3uBQxMBzdO3w6-nQYuxZwJwDKexJCQpEA5DFQJvsTNhN5KROpKjj9-1V6zi6ItgBZVpUwYx8L3hnCwGskH4ax9Tse05L5eXtDxGlAOwbf4xi-uBmG4I1tuPOBN-2m4WMT_LRphmnkETFr3_m-tXTJzpzpCK9-75y9Pz68LZ-T1evTy3KxSqwEOUYnkLVRhciLyq2rTK5liVZaJ4RKU4CizlyNKGxZ2WhdokNbO5dJqVKT1yjn7PbYG70-J6RR9y1Z7DqzQz-RFrFTFWkVwZt_4NZPYRfdtFKZqtRBZc7EEbLBEwV0eghtb8KXFqAPS-vj0jourQ9L6738BhtHc0c</recordid><startdate>20050701</startdate><enddate>20050701</enddate><creator>Vaidyanathan, Seetharaman</creator><creator>Jones, Dan</creator><creator>Broadhurst, David I.</creator><creator>Ellis, Joanne</creator><creator>Jenkins, Tudor</creator><creator>Dunn, Warwick B.</creator><creator>Hayes, Andrew</creator><creator>Burton, Nicola</creator><creator>Oliver, Stephen G.</creator><creator>Kell, Douglas B.</creator><creator>Goodacre, Royston</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20050701</creationdate><title>A laser desorption ionisation mass spectrometry approach for high throughput metabolomics</title><author>Vaidyanathan, Seetharaman ; Jones, Dan ; Broadhurst, David I. ; Ellis, Joanne ; Jenkins, Tudor ; Dunn, Warwick B. ; Hayes, Andrew ; Burton, Nicola ; Oliver, Stephen G. ; Kell, Douglas B. ; Goodacre, Royston</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-3803da861569fb943b37ec3cf11822006d4fdee1c79c0047efecdff43382a5de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Deletion mutant</topic><topic>Desorption</topic><topic>Gene deletion</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>Mutants</topic><topic>Scientific imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vaidyanathan, Seetharaman</creatorcontrib><creatorcontrib>Jones, Dan</creatorcontrib><creatorcontrib>Broadhurst, David I.</creatorcontrib><creatorcontrib>Ellis, Joanne</creatorcontrib><creatorcontrib>Jenkins, Tudor</creatorcontrib><creatorcontrib>Dunn, Warwick B.</creatorcontrib><creatorcontrib>Hayes, Andrew</creatorcontrib><creatorcontrib>Burton, Nicola</creatorcontrib><creatorcontrib>Oliver, Stephen G.</creatorcontrib><creatorcontrib>Kell, Douglas B.</creatorcontrib><creatorcontrib>Goodacre, Royston</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Metabolomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vaidyanathan, Seetharaman</au><au>Jones, Dan</au><au>Broadhurst, David I.</au><au>Ellis, Joanne</au><au>Jenkins, Tudor</au><au>Dunn, Warwick B.</au><au>Hayes, Andrew</au><au>Burton, Nicola</au><au>Oliver, Stephen G.</au><au>Kell, Douglas B.</au><au>Goodacre, Royston</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A laser desorption ionisation mass spectrometry approach for high throughput metabolomics</atitle><jtitle>Metabolomics</jtitle><date>2005-07-01</date><risdate>2005</risdate><volume>1</volume><issue>3</issue><spage>243</spage><epage>250</epage><pages>243-250</pages><issn>1573-3882</issn><eissn>1573-3890</eissn><abstract>The importance of metabolomic data in functional genomic investigations is increasingly becoming evident, as is its utility in novel biomarker discovery. We demonstrate a simple approach to the screening of metabolic information that we believe will be valuable in generating metabolomic data. Laser desorption ionisation mass spectrometry on porous silicon was effective in detecting 22 of 30 metabolites in a mixture in the negative-ion mode and 19 of 30 metabolites in the positive-ion mode, without the employment of any prior analyte separation steps. Overall, 26 of the 30 metabolites could be covered between the positive and negative-ion modes. Although the response for the metabolites at a given concentration differed, it was possible to generate direct quantitative information for a given analyte in the mixture. This technique was subsequently used to generate metabolic footprints from cell-free supernatants and, when combined with chemometric analysis, enabled us to discriminate haploid yeast single-gene deletants (mutants). In particular, the metabolic footprint of a deletion mutant in a gene encoding a transcriptional activator (Gln3p) showed increased levels of peaks, including one corresponding to glutamate, compared to the other mutants and the wild-type strain tested, enabling its discrimination based on metabolic information.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11306-005-0007-x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1573-3882
ispartof Metabolomics, 2005-07, Vol.1 (3), p.243-250
issn 1573-3882
1573-3890
language eng
recordid cdi_proquest_miscellaneous_19438629
source SpringerLink Journals - AutoHoldings
subjects Deletion mutant
Desorption
Gene deletion
Mass spectrometry
Mass spectroscopy
Metabolism
Metabolites
Metabolomics
Mutants
Scientific imaging
title A laser desorption ionisation mass spectrometry approach for high throughput metabolomics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20laser%20desorption%20ionisation%20mass%20spectrometry%20approach%20for%20high%20throughput%20metabolomics&rft.jtitle=Metabolomics&rft.au=Vaidyanathan,%20Seetharaman&rft.date=2005-07-01&rft.volume=1&rft.issue=3&rft.spage=243&rft.epage=250&rft.pages=243-250&rft.issn=1573-3882&rft.eissn=1573-3890&rft_id=info:doi/10.1007/s11306-005-0007-x&rft_dat=%3Cproquest_cross%3E19438629%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884898380&rft_id=info:pmid/&rfr_iscdi=true