Diffusion Reaction of Carbon Monoxide in the Human Lung

The capture of CO, a standard lung function test, results from diffusion-reaction processes of CO with hemoglobin inside red blood cells (RBCs). In its current understanding, suggested by Roughton and Forster in 1957, the capture is represented by two independent resistances in series, one for diffu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2017-08, Vol.119 (7), p.078101-078101, Article 078101
Hauptverfasser: Kang, M-Y, Guénard, H, Sapoval, B
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 078101
container_issue 7
container_start_page 078101
container_title Physical review letters
container_volume 119
creator Kang, M-Y
Guénard, H
Sapoval, B
description The capture of CO, a standard lung function test, results from diffusion-reaction processes of CO with hemoglobin inside red blood cells (RBCs). In its current understanding, suggested by Roughton and Forster in 1957, the capture is represented by two independent resistances in series, one for diffusion from the gas to the RBC periphery, the second for internal diffusion reaction. Numerical studies in 3D model structures described here contradict the independence hypothesis. This results from two different theoretical reasons: (i) The RBC peripheries are not equi-concentrations; (ii) diffusion times in series are not additive.
doi_str_mv 10.1103/PhysRevLett.119.078101
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1943647950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1943647950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-b7401b11bb81de0bdc30b50e5e3b5e4fd096e0e4c9006de9f845c54db76db8c83</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EoqXwClWOXFJ2a8eOj6j8FCkIVMHZiu0NDWoSiBNE355ULYjTjkYzu6uPsSnCDBH41fN6G1b0lVHXDYaegUoR8IiNEZSOFaI4ZmMAjrEGUCN2FsI7AOBcpqdsNE-10FLJMVM3ZVH0oWzqaEW563aiKaJF3tpBPTZ18116iso66tYULfsqr6Osr9_O2UmRbwJdHOaEvd7dviyWcfZ0_7C4zmLHEbvYKgFoEa1N0RNY7zjYBCghbhMShQctCUi44UvpSRepSFwivFXS29SlfMIu93s_2uazp9CZqgyONpu8pqYPBrXgUiidwBCV-6hrmxBaKsxHW1Z5uzUIZgfN_IM2GNrsoQ3F6eFGbyvyf7VfSvwHDjlqmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943647950</pqid></control><display><type>article</type><title>Diffusion Reaction of Carbon Monoxide in the Human Lung</title><source>American Physical Society</source><creator>Kang, M-Y ; Guénard, H ; Sapoval, B</creator><creatorcontrib>Kang, M-Y ; Guénard, H ; Sapoval, B</creatorcontrib><description>The capture of CO, a standard lung function test, results from diffusion-reaction processes of CO with hemoglobin inside red blood cells (RBCs). In its current understanding, suggested by Roughton and Forster in 1957, the capture is represented by two independent resistances in series, one for diffusion from the gas to the RBC periphery, the second for internal diffusion reaction. Numerical studies in 3D model structures described here contradict the independence hypothesis. This results from two different theoretical reasons: (i) The RBC peripheries are not equi-concentrations; (ii) diffusion times in series are not additive.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.119.078101</identifier><identifier>PMID: 28949676</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2017-08, Vol.119 (7), p.078101-078101, Article 078101</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-b7401b11bb81de0bdc30b50e5e3b5e4fd096e0e4c9006de9f845c54db76db8c83</citedby><cites>FETCH-LOGICAL-c311t-b7401b11bb81de0bdc30b50e5e3b5e4fd096e0e4c9006de9f845c54db76db8c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2874,2875,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28949676$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, M-Y</creatorcontrib><creatorcontrib>Guénard, H</creatorcontrib><creatorcontrib>Sapoval, B</creatorcontrib><title>Diffusion Reaction of Carbon Monoxide in the Human Lung</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The capture of CO, a standard lung function test, results from diffusion-reaction processes of CO with hemoglobin inside red blood cells (RBCs). In its current understanding, suggested by Roughton and Forster in 1957, the capture is represented by two independent resistances in series, one for diffusion from the gas to the RBC periphery, the second for internal diffusion reaction. Numerical studies in 3D model structures described here contradict the independence hypothesis. This results from two different theoretical reasons: (i) The RBC peripheries are not equi-concentrations; (ii) diffusion times in series are not additive.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkM1OwzAQhC0EoqXwClWOXFJ2a8eOj6j8FCkIVMHZiu0NDWoSiBNE355ULYjTjkYzu6uPsSnCDBH41fN6G1b0lVHXDYaegUoR8IiNEZSOFaI4ZmMAjrEGUCN2FsI7AOBcpqdsNE-10FLJMVM3ZVH0oWzqaEW563aiKaJF3tpBPTZ18116iso66tYULfsqr6Osr9_O2UmRbwJdHOaEvd7dviyWcfZ0_7C4zmLHEbvYKgFoEa1N0RNY7zjYBCghbhMShQctCUi44UvpSRepSFwivFXS29SlfMIu93s_2uazp9CZqgyONpu8pqYPBrXgUiidwBCV-6hrmxBaKsxHW1Z5uzUIZgfN_IM2GNrsoQ3F6eFGbyvyf7VfSvwHDjlqmw</recordid><startdate>20170818</startdate><enddate>20170818</enddate><creator>Kang, M-Y</creator><creator>Guénard, H</creator><creator>Sapoval, B</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170818</creationdate><title>Diffusion Reaction of Carbon Monoxide in the Human Lung</title><author>Kang, M-Y ; Guénard, H ; Sapoval, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-b7401b11bb81de0bdc30b50e5e3b5e4fd096e0e4c9006de9f845c54db76db8c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, M-Y</creatorcontrib><creatorcontrib>Guénard, H</creatorcontrib><creatorcontrib>Sapoval, B</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, M-Y</au><au>Guénard, H</au><au>Sapoval, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion Reaction of Carbon Monoxide in the Human Lung</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2017-08-18</date><risdate>2017</risdate><volume>119</volume><issue>7</issue><spage>078101</spage><epage>078101</epage><pages>078101-078101</pages><artnum>078101</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The capture of CO, a standard lung function test, results from diffusion-reaction processes of CO with hemoglobin inside red blood cells (RBCs). In its current understanding, suggested by Roughton and Forster in 1957, the capture is represented by two independent resistances in series, one for diffusion from the gas to the RBC periphery, the second for internal diffusion reaction. Numerical studies in 3D model structures described here contradict the independence hypothesis. This results from two different theoretical reasons: (i) The RBC peripheries are not equi-concentrations; (ii) diffusion times in series are not additive.</abstract><cop>United States</cop><pmid>28949676</pmid><doi>10.1103/PhysRevLett.119.078101</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2017-08, Vol.119 (7), p.078101-078101, Article 078101
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_1943647950
source American Physical Society
title Diffusion Reaction of Carbon Monoxide in the Human Lung
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A16%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20Reaction%20of%20Carbon%20Monoxide%20in%20the%20Human%20Lung&rft.jtitle=Physical%20review%20letters&rft.au=Kang,%20M-Y&rft.date=2017-08-18&rft.volume=119&rft.issue=7&rft.spage=078101&rft.epage=078101&rft.pages=078101-078101&rft.artnum=078101&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.119.078101&rft_dat=%3Cproquest_cross%3E1943647950%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1943647950&rft_id=info:pmid/28949676&rfr_iscdi=true