Biodegradable polymers in chondrogenesis of human articular chondrocytes
The aim of this study was to evaluate the potential role of polyglycolic acid (PGA), poly(glycolic acid-epsilon-caprolactone) (PGCL), poly(L-lactic acid-glycolic acid) (PLGA), poly(L-lactic acid-epsilon-caprolactone, 75:25 (w/w)) [P(LA-CL)25], poly-epsilon-caprolactone (tetrabutoxy titanium) [PCL(Ti...
Gespeichert in:
Veröffentlicht in: | Journal of artificial organs 2005-09, Vol.8 (3), p.184-191 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 191 |
---|---|
container_issue | 3 |
container_start_page | 184 |
container_title | Journal of artificial organs |
container_volume | 8 |
creator | Banu, Nasreen Banu, Yasmin Sakai, Masamune Mashino, Tadahiko Tsuchiya, Toshie |
description | The aim of this study was to evaluate the potential role of polyglycolic acid (PGA), poly(glycolic acid-epsilon-caprolactone) (PGCL), poly(L-lactic acid-glycolic acid) (PLGA), poly(L-lactic acid-epsilon-caprolactone, 75:25 (w/w)) [P(LA-CL)25], poly-epsilon-caprolactone (tetrabutoxy titanium) [PCL(Ti)], and fullerene C-60 dimalonic acid (DMA) in cartilage transplants. After 4 weeks of culture of human articular cartilage, the levels of cell proliferation and differentiation and the expression of cartilage-specific matrix genes were estimated. The relationship between cell differentiation and gap junction protein connexin 43 (Cx43) was also evaluated. All materials except PCL(Ti) retained cell proliferation activities similar to the controls. Cell differentiation levels from the highest to the lowest were in the following order: PGA >> PLGA > PGCL > Control = DMSO > P(LA-CL)25 = PCL(Ti) >> fullerene C-60 DMA. Expression of the collagen type II gene was selectively upregulated for PGA, PGCL, and PLGA and slightly increased for P(LA-CL)25 polymers but was downregulated for fullerene C-60 DMA. Aggrecan gene expression was strongest with PGA and was consistently expressed with other matrices, especially with PGCL and PLGA. However, the expression patterns of the connexin 43 gene were different from the former two genes. Multiple regression analysis revealed a high correlation between cartilage proteoglycans production and expression levels of these three genes. |
doi_str_mv | 10.1007/s10047-005-0302-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19428745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19428745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-c9ee1b51f15047fe8372da643cb5b136271f067924eba3da436bc9b64dc65d1e3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRrFZ_gBcJCN6iO_vZPWpRKxS86HnZbCZtSpKtu8mh_96UVgQvM3N43pfhIeQG6ANQqh_TOIXOKZU55ZTl_IRcgAKTU0PF6XgLLnLNmJmQy5Q2lIKWmp6TCSjGJeXygiye61DiKrrSFQ1m29DsWowpq7vMr0NXxrDCDlOdslBl66F1XeZiX_uhcfGX8Lse0xU5q1yT8Pq4p-Tr9eVzvsiXH2_v86dl7pnRfe4NIhQSKpDj6xXOuGalU4L7QhbAFdNQUaUNE1g4XjrBVeFNoUTplSwB-ZTcH3q3MXwPmHrb1slj07gOw5AsGMFmWsgRvPsHbsIQu_E3CwBcaENnaqTgQPkYUopY2W2sWxd3FqjdS7YHyXaUbPeSLR8zt8fmoWix_EscrfIfR1x3XA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1113479086</pqid></control><display><type>article</type><title>Biodegradable polymers in chondrogenesis of human articular chondrocytes</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Banu, Nasreen ; Banu, Yasmin ; Sakai, Masamune ; Mashino, Tadahiko ; Tsuchiya, Toshie</creator><creatorcontrib>Banu, Nasreen ; Banu, Yasmin ; Sakai, Masamune ; Mashino, Tadahiko ; Tsuchiya, Toshie</creatorcontrib><description>The aim of this study was to evaluate the potential role of polyglycolic acid (PGA), poly(glycolic acid-epsilon-caprolactone) (PGCL), poly(L-lactic acid-glycolic acid) (PLGA), poly(L-lactic acid-epsilon-caprolactone, 75:25 (w/w)) [P(LA-CL)25], poly-epsilon-caprolactone (tetrabutoxy titanium) [PCL(Ti)], and fullerene C-60 dimalonic acid (DMA) in cartilage transplants. After 4 weeks of culture of human articular cartilage, the levels of cell proliferation and differentiation and the expression of cartilage-specific matrix genes were estimated. The relationship between cell differentiation and gap junction protein connexin 43 (Cx43) was also evaluated. All materials except PCL(Ti) retained cell proliferation activities similar to the controls. Cell differentiation levels from the highest to the lowest were in the following order: PGA >> PLGA > PGCL > Control = DMSO > P(LA-CL)25 = PCL(Ti) >> fullerene C-60 DMA. Expression of the collagen type II gene was selectively upregulated for PGA, PGCL, and PLGA and slightly increased for P(LA-CL)25 polymers but was downregulated for fullerene C-60 DMA. Aggrecan gene expression was strongest with PGA and was consistently expressed with other matrices, especially with PGCL and PLGA. However, the expression patterns of the connexin 43 gene were different from the former two genes. Multiple regression analysis revealed a high correlation between cartilage proteoglycans production and expression levels of these three genes.</description><identifier>ISSN: 1434-7229</identifier><identifier>EISSN: 1619-0904</identifier><identifier>DOI: 10.1007/s10047-005-0302-3</identifier><identifier>PMID: 16235035</identifier><language>eng</language><publisher>Japan: Springer Nature B.V</publisher><subject>Biodegradation, Environmental ; Cartilage, Articular - cytology ; Cartilage, Articular - metabolism ; Cell Division ; Cells, Cultured ; Chondrocytes - cytology ; Chondrocytes - metabolism ; Chondrogenesis ; Connexin 43 - metabolism ; Extracellular Matrix Proteins - genetics ; Extracellular Matrix Proteins - metabolism ; Gene Expression ; Humans ; Knee Joint ; Polymers ; Proteins ; Proteoglycans - biosynthesis ; Tissue Engineering</subject><ispartof>Journal of artificial organs, 2005-09, Vol.8 (3), p.184-191</ispartof><rights>The Japanese Society for Artificial Organs 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-c9ee1b51f15047fe8372da643cb5b136271f067924eba3da436bc9b64dc65d1e3</citedby><cites>FETCH-LOGICAL-c297t-c9ee1b51f15047fe8372da643cb5b136271f067924eba3da436bc9b64dc65d1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16235035$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Banu, Nasreen</creatorcontrib><creatorcontrib>Banu, Yasmin</creatorcontrib><creatorcontrib>Sakai, Masamune</creatorcontrib><creatorcontrib>Mashino, Tadahiko</creatorcontrib><creatorcontrib>Tsuchiya, Toshie</creatorcontrib><title>Biodegradable polymers in chondrogenesis of human articular chondrocytes</title><title>Journal of artificial organs</title><addtitle>J Artif Organs</addtitle><description>The aim of this study was to evaluate the potential role of polyglycolic acid (PGA), poly(glycolic acid-epsilon-caprolactone) (PGCL), poly(L-lactic acid-glycolic acid) (PLGA), poly(L-lactic acid-epsilon-caprolactone, 75:25 (w/w)) [P(LA-CL)25], poly-epsilon-caprolactone (tetrabutoxy titanium) [PCL(Ti)], and fullerene C-60 dimalonic acid (DMA) in cartilage transplants. After 4 weeks of culture of human articular cartilage, the levels of cell proliferation and differentiation and the expression of cartilage-specific matrix genes were estimated. The relationship between cell differentiation and gap junction protein connexin 43 (Cx43) was also evaluated. All materials except PCL(Ti) retained cell proliferation activities similar to the controls. Cell differentiation levels from the highest to the lowest were in the following order: PGA >> PLGA > PGCL > Control = DMSO > P(LA-CL)25 = PCL(Ti) >> fullerene C-60 DMA. Expression of the collagen type II gene was selectively upregulated for PGA, PGCL, and PLGA and slightly increased for P(LA-CL)25 polymers but was downregulated for fullerene C-60 DMA. Aggrecan gene expression was strongest with PGA and was consistently expressed with other matrices, especially with PGCL and PLGA. However, the expression patterns of the connexin 43 gene were different from the former two genes. Multiple regression analysis revealed a high correlation between cartilage proteoglycans production and expression levels of these three genes.</description><subject>Biodegradation, Environmental</subject><subject>Cartilage, Articular - cytology</subject><subject>Cartilage, Articular - metabolism</subject><subject>Cell Division</subject><subject>Cells, Cultured</subject><subject>Chondrocytes - cytology</subject><subject>Chondrocytes - metabolism</subject><subject>Chondrogenesis</subject><subject>Connexin 43 - metabolism</subject><subject>Extracellular Matrix Proteins - genetics</subject><subject>Extracellular Matrix Proteins - metabolism</subject><subject>Gene Expression</subject><subject>Humans</subject><subject>Knee Joint</subject><subject>Polymers</subject><subject>Proteins</subject><subject>Proteoglycans - biosynthesis</subject><subject>Tissue Engineering</subject><issn>1434-7229</issn><issn>1619-0904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkE1Lw0AQhhdRrFZ_gBcJCN6iO_vZPWpRKxS86HnZbCZtSpKtu8mh_96UVgQvM3N43pfhIeQG6ANQqh_TOIXOKZU55ZTl_IRcgAKTU0PF6XgLLnLNmJmQy5Q2lIKWmp6TCSjGJeXygiye61DiKrrSFQ1m29DsWowpq7vMr0NXxrDCDlOdslBl66F1XeZiX_uhcfGX8Lse0xU5q1yT8Pq4p-Tr9eVzvsiXH2_v86dl7pnRfe4NIhQSKpDj6xXOuGalU4L7QhbAFdNQUaUNE1g4XjrBVeFNoUTplSwB-ZTcH3q3MXwPmHrb1slj07gOw5AsGMFmWsgRvPsHbsIQu_E3CwBcaENnaqTgQPkYUopY2W2sWxd3FqjdS7YHyXaUbPeSLR8zt8fmoWix_EscrfIfR1x3XA</recordid><startdate>200509</startdate><enddate>200509</enddate><creator>Banu, Nasreen</creator><creator>Banu, Yasmin</creator><creator>Sakai, Masamune</creator><creator>Mashino, Tadahiko</creator><creator>Tsuchiya, Toshie</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>200509</creationdate><title>Biodegradable polymers in chondrogenesis of human articular chondrocytes</title><author>Banu, Nasreen ; Banu, Yasmin ; Sakai, Masamune ; Mashino, Tadahiko ; Tsuchiya, Toshie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-c9ee1b51f15047fe8372da643cb5b136271f067924eba3da436bc9b64dc65d1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biodegradation, Environmental</topic><topic>Cartilage, Articular - cytology</topic><topic>Cartilage, Articular - metabolism</topic><topic>Cell Division</topic><topic>Cells, Cultured</topic><topic>Chondrocytes - cytology</topic><topic>Chondrocytes - metabolism</topic><topic>Chondrogenesis</topic><topic>Connexin 43 - metabolism</topic><topic>Extracellular Matrix Proteins - genetics</topic><topic>Extracellular Matrix Proteins - metabolism</topic><topic>Gene Expression</topic><topic>Humans</topic><topic>Knee Joint</topic><topic>Polymers</topic><topic>Proteins</topic><topic>Proteoglycans - biosynthesis</topic><topic>Tissue Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banu, Nasreen</creatorcontrib><creatorcontrib>Banu, Yasmin</creatorcontrib><creatorcontrib>Sakai, Masamune</creatorcontrib><creatorcontrib>Mashino, Tadahiko</creatorcontrib><creatorcontrib>Tsuchiya, Toshie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of artificial organs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banu, Nasreen</au><au>Banu, Yasmin</au><au>Sakai, Masamune</au><au>Mashino, Tadahiko</au><au>Tsuchiya, Toshie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biodegradable polymers in chondrogenesis of human articular chondrocytes</atitle><jtitle>Journal of artificial organs</jtitle><addtitle>J Artif Organs</addtitle><date>2005-09</date><risdate>2005</risdate><volume>8</volume><issue>3</issue><spage>184</spage><epage>191</epage><pages>184-191</pages><issn>1434-7229</issn><eissn>1619-0904</eissn><abstract>The aim of this study was to evaluate the potential role of polyglycolic acid (PGA), poly(glycolic acid-epsilon-caprolactone) (PGCL), poly(L-lactic acid-glycolic acid) (PLGA), poly(L-lactic acid-epsilon-caprolactone, 75:25 (w/w)) [P(LA-CL)25], poly-epsilon-caprolactone (tetrabutoxy titanium) [PCL(Ti)], and fullerene C-60 dimalonic acid (DMA) in cartilage transplants. After 4 weeks of culture of human articular cartilage, the levels of cell proliferation and differentiation and the expression of cartilage-specific matrix genes were estimated. The relationship between cell differentiation and gap junction protein connexin 43 (Cx43) was also evaluated. All materials except PCL(Ti) retained cell proliferation activities similar to the controls. Cell differentiation levels from the highest to the lowest were in the following order: PGA >> PLGA > PGCL > Control = DMSO > P(LA-CL)25 = PCL(Ti) >> fullerene C-60 DMA. Expression of the collagen type II gene was selectively upregulated for PGA, PGCL, and PLGA and slightly increased for P(LA-CL)25 polymers but was downregulated for fullerene C-60 DMA. Aggrecan gene expression was strongest with PGA and was consistently expressed with other matrices, especially with PGCL and PLGA. However, the expression patterns of the connexin 43 gene were different from the former two genes. Multiple regression analysis revealed a high correlation between cartilage proteoglycans production and expression levels of these three genes.</abstract><cop>Japan</cop><pub>Springer Nature B.V</pub><pmid>16235035</pmid><doi>10.1007/s10047-005-0302-3</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-7229 |
ispartof | Journal of artificial organs, 2005-09, Vol.8 (3), p.184-191 |
issn | 1434-7229 1619-0904 |
language | eng |
recordid | cdi_proquest_miscellaneous_19428745 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Biodegradation, Environmental Cartilage, Articular - cytology Cartilage, Articular - metabolism Cell Division Cells, Cultured Chondrocytes - cytology Chondrocytes - metabolism Chondrogenesis Connexin 43 - metabolism Extracellular Matrix Proteins - genetics Extracellular Matrix Proteins - metabolism Gene Expression Humans Knee Joint Polymers Proteins Proteoglycans - biosynthesis Tissue Engineering |
title | Biodegradable polymers in chondrogenesis of human articular chondrocytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A10%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biodegradable%20polymers%20in%20chondrogenesis%20of%20human%20articular%20chondrocytes&rft.jtitle=Journal%20of%20artificial%20organs&rft.au=Banu,%20Nasreen&rft.date=2005-09&rft.volume=8&rft.issue=3&rft.spage=184&rft.epage=191&rft.pages=184-191&rft.issn=1434-7229&rft.eissn=1619-0904&rft_id=info:doi/10.1007/s10047-005-0302-3&rft_dat=%3Cproquest_cross%3E19428745%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1113479086&rft_id=info:pmid/16235035&rfr_iscdi=true |