Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis
Hyaluronic acid (HA) is a high‐value biopolymer used in the biomedical, pharmaceutical, cosmetic, and food industries. Current methods of HA production, including extraction from animal sources and streptococcal cultivations, are associated with high costs and health risks. Accordingly, the developm...
Gespeichert in:
Veröffentlicht in: | Biotechnology and bioengineering 2018-01, Vol.115 (1), p.216-231 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 231 |
---|---|
container_issue | 1 |
container_start_page | 216 |
container_title | Biotechnology and bioengineering |
container_volume | 115 |
creator | Westbrook, Adam W. Ren, Xiang Moo‐Young, Murray Chou, C. Perry |
description | Hyaluronic acid (HA) is a high‐value biopolymer used in the biomedical, pharmaceutical, cosmetic, and food industries. Current methods of HA production, including extraction from animal sources and streptococcal cultivations, are associated with high costs and health risks. Accordingly, the development of bioprocesses for HA production centered on robust “Generally Recognized as Safe (GRAS)” organisms such as Bacillus subtilis is highly attractive. Here, we report the development of novel strains of B. subtilis in which the membrane cardiolipin (CL) content and distribution has been engineered to enhance the functional expression of heterologously expressed hyaluronan synthase (HAS) of Streptococcus equisimilis (SeHAS), in turn, improving the culture performance for HA production. Elevation of membrane CL levels via overexpressing components involved in the CL biosynthesis pathway, and redistribution of CL along the lateral membrane via repression of the cell division initiator protein FtsZ resulted in increases to the HA titer of up to 204% and peak molecular weight of up to 2.2 MDa. Moreover, removal of phosphatidylethanolamine and neutral glycolipids from the membrane of HA‐producing B. subtilis via inactivation of pssA and ugtP, respectively, has suggested the lipid dependence for functional expression of SeHAS. Our study demonstrates successful application of membrane engineering strategies to develop an effective platform for biomanufacturing of HA with B. subtilis strains expressing Class I streptococcal HAS.
Bacillus subtilis is an ideal bacterium for biomanufacturing, and has been applied successfully to heterologous hyaluronic acid (HA) production on an industrial scale. Modulating the cardiolipin content and distribution in cell membrane can significantly enhance both the molecular weight and titer of HA produced in B. subtilis expressing streptococcal hyaluronan synthase. |
doi_str_mv | 10.1002/bit.26459 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1942713935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1942713935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4259-b3ce67872f30beee22131dcb385de8ac9f96375b50472f36bbb92223aaf1e8153</originalsourceid><addsrcrecordid>eNp1kEtL9DAUhoMoOl4W_oGPgBtdVHNp02ap4g0EN7ouSXo6E0kTTVpk_r2po99CcHVy4MnDe16Ejik5p4SwC23HcybKSm6hBSWyLgiTZBstCCGi4JVke2g_pde81o0Qu2iPNbKkrGELtLzxS-sBovVLHHpswDk8wKCj8oDHgMGvlDeAVzBCDC4sw5TwWwzdZEYb_PxntVZuisFbg5WxHbYeX-WHc5lMkx6ts-kQ7fTKJTj6ngfo5fbm-fq-eHy6e7i-fCxMySpZaG5A1E3Nek40ADBGOe2M5k3VQaOM7KXgdaUrUs6M0FpLxhhXqqfQ0IofoNONN0d8nyCN7WDTfFQ-JydvqSxZTbnkM3ryC30NU_Q5XaaEkLzhX8KzDWViSClC375FO6i4bilp5_bb3H771X5m_30bJz1A95_8qTsDFxvgwzpY_21qrx6eN8pPKIKO_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966938315</pqid></control><display><type>article</type><title>Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Westbrook, Adam W. ; Ren, Xiang ; Moo‐Young, Murray ; Chou, C. Perry</creator><creatorcontrib>Westbrook, Adam W. ; Ren, Xiang ; Moo‐Young, Murray ; Chou, C. Perry</creatorcontrib><description>Hyaluronic acid (HA) is a high‐value biopolymer used in the biomedical, pharmaceutical, cosmetic, and food industries. Current methods of HA production, including extraction from animal sources and streptococcal cultivations, are associated with high costs and health risks. Accordingly, the development of bioprocesses for HA production centered on robust “Generally Recognized as Safe (GRAS)” organisms such as Bacillus subtilis is highly attractive. Here, we report the development of novel strains of B. subtilis in which the membrane cardiolipin (CL) content and distribution has been engineered to enhance the functional expression of heterologously expressed hyaluronan synthase (HAS) of Streptococcus equisimilis (SeHAS), in turn, improving the culture performance for HA production. Elevation of membrane CL levels via overexpressing components involved in the CL biosynthesis pathway, and redistribution of CL along the lateral membrane via repression of the cell division initiator protein FtsZ resulted in increases to the HA titer of up to 204% and peak molecular weight of up to 2.2 MDa. Moreover, removal of phosphatidylethanolamine and neutral glycolipids from the membrane of HA‐producing B. subtilis via inactivation of pssA and ugtP, respectively, has suggested the lipid dependence for functional expression of SeHAS. Our study demonstrates successful application of membrane engineering strategies to develop an effective platform for biomanufacturing of HA with B. subtilis strains expressing Class I streptococcal HAS.
Bacillus subtilis is an ideal bacterium for biomanufacturing, and has been applied successfully to heterologous hyaluronic acid (HA) production on an industrial scale. Modulating the cardiolipin content and distribution in cell membrane can significantly enhance both the molecular weight and titer of HA produced in B. subtilis expressing streptococcal hyaluronan synthase.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.26459</identifier><identifier>PMID: 28941282</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Bacillus subtilis ; Bacillus subtilis - genetics ; Bacillus subtilis - metabolism ; Biopolymers ; Biosynthesis ; Cardiolipin ; Cardiolipins - metabolism ; Cell culture ; Cell division ; Cell Membrane - genetics ; Cell Membrane - metabolism ; CRISPR ; Deactivation ; Engineering ; Food industry ; Food production ; Gene Expression ; Glycolipids ; Health risks ; hyaluronan ; Hyaluronan synthase ; Hyaluronan Synthases - genetics ; Hyaluronan Synthases - metabolism ; Hyaluronic acid ; Hyaluronic Acid - biosynthesis ; Hyaluronic Acid - chemistry ; Inactivation ; membrane engineering ; Metabolic Engineering - methods ; Molecular Weight ; Phosphatidylethanolamine ; Production methods ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Risk factors ; Strains (organisms) ; Streptococcus - enzymology ; Streptococcus - genetics ; Streptococcus equisimilis ; transcriptional interference</subject><ispartof>Biotechnology and bioengineering, 2018-01, Vol.115 (1), p.216-231</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4259-b3ce67872f30beee22131dcb385de8ac9f96375b50472f36bbb92223aaf1e8153</citedby><cites>FETCH-LOGICAL-c4259-b3ce67872f30beee22131dcb385de8ac9f96375b50472f36bbb92223aaf1e8153</cites><orcidid>0000-0002-7254-8118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.26459$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.26459$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28941282$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Westbrook, Adam W.</creatorcontrib><creatorcontrib>Ren, Xiang</creatorcontrib><creatorcontrib>Moo‐Young, Murray</creatorcontrib><creatorcontrib>Chou, C. Perry</creatorcontrib><title>Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol Bioeng</addtitle><description>Hyaluronic acid (HA) is a high‐value biopolymer used in the biomedical, pharmaceutical, cosmetic, and food industries. Current methods of HA production, including extraction from animal sources and streptococcal cultivations, are associated with high costs and health risks. Accordingly, the development of bioprocesses for HA production centered on robust “Generally Recognized as Safe (GRAS)” organisms such as Bacillus subtilis is highly attractive. Here, we report the development of novel strains of B. subtilis in which the membrane cardiolipin (CL) content and distribution has been engineered to enhance the functional expression of heterologously expressed hyaluronan synthase (HAS) of Streptococcus equisimilis (SeHAS), in turn, improving the culture performance for HA production. Elevation of membrane CL levels via overexpressing components involved in the CL biosynthesis pathway, and redistribution of CL along the lateral membrane via repression of the cell division initiator protein FtsZ resulted in increases to the HA titer of up to 204% and peak molecular weight of up to 2.2 MDa. Moreover, removal of phosphatidylethanolamine and neutral glycolipids from the membrane of HA‐producing B. subtilis via inactivation of pssA and ugtP, respectively, has suggested the lipid dependence for functional expression of SeHAS. Our study demonstrates successful application of membrane engineering strategies to develop an effective platform for biomanufacturing of HA with B. subtilis strains expressing Class I streptococcal HAS.
Bacillus subtilis is an ideal bacterium for biomanufacturing, and has been applied successfully to heterologous hyaluronic acid (HA) production on an industrial scale. Modulating the cardiolipin content and distribution in cell membrane can significantly enhance both the molecular weight and titer of HA produced in B. subtilis expressing streptococcal hyaluronan synthase.</description><subject>Bacillus subtilis</subject><subject>Bacillus subtilis - genetics</subject><subject>Bacillus subtilis - metabolism</subject><subject>Biopolymers</subject><subject>Biosynthesis</subject><subject>Cardiolipin</subject><subject>Cardiolipins - metabolism</subject><subject>Cell culture</subject><subject>Cell division</subject><subject>Cell Membrane - genetics</subject><subject>Cell Membrane - metabolism</subject><subject>CRISPR</subject><subject>Deactivation</subject><subject>Engineering</subject><subject>Food industry</subject><subject>Food production</subject><subject>Gene Expression</subject><subject>Glycolipids</subject><subject>Health risks</subject><subject>hyaluronan</subject><subject>Hyaluronan synthase</subject><subject>Hyaluronan Synthases - genetics</subject><subject>Hyaluronan Synthases - metabolism</subject><subject>Hyaluronic acid</subject><subject>Hyaluronic Acid - biosynthesis</subject><subject>Hyaluronic Acid - chemistry</subject><subject>Inactivation</subject><subject>membrane engineering</subject><subject>Metabolic Engineering - methods</subject><subject>Molecular Weight</subject><subject>Phosphatidylethanolamine</subject><subject>Production methods</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Risk factors</subject><subject>Strains (organisms)</subject><subject>Streptococcus - enzymology</subject><subject>Streptococcus - genetics</subject><subject>Streptococcus equisimilis</subject><subject>transcriptional interference</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtL9DAUhoMoOl4W_oGPgBtdVHNp02ap4g0EN7ouSXo6E0kTTVpk_r2po99CcHVy4MnDe16Ejik5p4SwC23HcybKSm6hBSWyLgiTZBstCCGi4JVke2g_pde81o0Qu2iPNbKkrGELtLzxS-sBovVLHHpswDk8wKCj8oDHgMGvlDeAVzBCDC4sw5TwWwzdZEYb_PxntVZuisFbg5WxHbYeX-WHc5lMkx6ts-kQ7fTKJTj6ngfo5fbm-fq-eHy6e7i-fCxMySpZaG5A1E3Nek40ADBGOe2M5k3VQaOM7KXgdaUrUs6M0FpLxhhXqqfQ0IofoNONN0d8nyCN7WDTfFQ-JydvqSxZTbnkM3ryC30NU_Q5XaaEkLzhX8KzDWViSClC375FO6i4bilp5_bb3H771X5m_30bJz1A95_8qTsDFxvgwzpY_21qrx6eN8pPKIKO_Q</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Westbrook, Adam W.</creator><creator>Ren, Xiang</creator><creator>Moo‐Young, Murray</creator><creator>Chou, C. Perry</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7254-8118</orcidid></search><sort><creationdate>201801</creationdate><title>Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis</title><author>Westbrook, Adam W. ; Ren, Xiang ; Moo‐Young, Murray ; Chou, C. Perry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4259-b3ce67872f30beee22131dcb385de8ac9f96375b50472f36bbb92223aaf1e8153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bacillus subtilis</topic><topic>Bacillus subtilis - genetics</topic><topic>Bacillus subtilis - metabolism</topic><topic>Biopolymers</topic><topic>Biosynthesis</topic><topic>Cardiolipin</topic><topic>Cardiolipins - metabolism</topic><topic>Cell culture</topic><topic>Cell division</topic><topic>Cell Membrane - genetics</topic><topic>Cell Membrane - metabolism</topic><topic>CRISPR</topic><topic>Deactivation</topic><topic>Engineering</topic><topic>Food industry</topic><topic>Food production</topic><topic>Gene Expression</topic><topic>Glycolipids</topic><topic>Health risks</topic><topic>hyaluronan</topic><topic>Hyaluronan synthase</topic><topic>Hyaluronan Synthases - genetics</topic><topic>Hyaluronan Synthases - metabolism</topic><topic>Hyaluronic acid</topic><topic>Hyaluronic Acid - biosynthesis</topic><topic>Hyaluronic Acid - chemistry</topic><topic>Inactivation</topic><topic>membrane engineering</topic><topic>Metabolic Engineering - methods</topic><topic>Molecular Weight</topic><topic>Phosphatidylethanolamine</topic><topic>Production methods</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Risk factors</topic><topic>Strains (organisms)</topic><topic>Streptococcus - enzymology</topic><topic>Streptococcus - genetics</topic><topic>Streptococcus equisimilis</topic><topic>transcriptional interference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Westbrook, Adam W.</creatorcontrib><creatorcontrib>Ren, Xiang</creatorcontrib><creatorcontrib>Moo‐Young, Murray</creatorcontrib><creatorcontrib>Chou, C. Perry</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Westbrook, Adam W.</au><au>Ren, Xiang</au><au>Moo‐Young, Murray</au><au>Chou, C. Perry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol Bioeng</addtitle><date>2018-01</date><risdate>2018</risdate><volume>115</volume><issue>1</issue><spage>216</spage><epage>231</epage><pages>216-231</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><abstract>Hyaluronic acid (HA) is a high‐value biopolymer used in the biomedical, pharmaceutical, cosmetic, and food industries. Current methods of HA production, including extraction from animal sources and streptococcal cultivations, are associated with high costs and health risks. Accordingly, the development of bioprocesses for HA production centered on robust “Generally Recognized as Safe (GRAS)” organisms such as Bacillus subtilis is highly attractive. Here, we report the development of novel strains of B. subtilis in which the membrane cardiolipin (CL) content and distribution has been engineered to enhance the functional expression of heterologously expressed hyaluronan synthase (HAS) of Streptococcus equisimilis (SeHAS), in turn, improving the culture performance for HA production. Elevation of membrane CL levels via overexpressing components involved in the CL biosynthesis pathway, and redistribution of CL along the lateral membrane via repression of the cell division initiator protein FtsZ resulted in increases to the HA titer of up to 204% and peak molecular weight of up to 2.2 MDa. Moreover, removal of phosphatidylethanolamine and neutral glycolipids from the membrane of HA‐producing B. subtilis via inactivation of pssA and ugtP, respectively, has suggested the lipid dependence for functional expression of SeHAS. Our study demonstrates successful application of membrane engineering strategies to develop an effective platform for biomanufacturing of HA with B. subtilis strains expressing Class I streptococcal HAS.
Bacillus subtilis is an ideal bacterium for biomanufacturing, and has been applied successfully to heterologous hyaluronic acid (HA) production on an industrial scale. Modulating the cardiolipin content and distribution in cell membrane can significantly enhance both the molecular weight and titer of HA produced in B. subtilis expressing streptococcal hyaluronan synthase.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28941282</pmid><doi>10.1002/bit.26459</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7254-8118</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2018-01, Vol.115 (1), p.216-231 |
issn | 0006-3592 1097-0290 |
language | eng |
recordid | cdi_proquest_miscellaneous_1942713935 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Bacillus subtilis Bacillus subtilis - genetics Bacillus subtilis - metabolism Biopolymers Biosynthesis Cardiolipin Cardiolipins - metabolism Cell culture Cell division Cell Membrane - genetics Cell Membrane - metabolism CRISPR Deactivation Engineering Food industry Food production Gene Expression Glycolipids Health risks hyaluronan Hyaluronan synthase Hyaluronan Synthases - genetics Hyaluronan Synthases - metabolism Hyaluronic acid Hyaluronic Acid - biosynthesis Hyaluronic Acid - chemistry Inactivation membrane engineering Metabolic Engineering - methods Molecular Weight Phosphatidylethanolamine Production methods Recombinant Proteins - genetics Recombinant Proteins - metabolism Risk factors Strains (organisms) Streptococcus - enzymology Streptococcus - genetics Streptococcus equisimilis transcriptional interference |
title | Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A37%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20of%20cell%20membrane%20to%20enhance%20heterologous%20production%20of%20hyaluronic%20acid%20in%20Bacillus%20subtilis&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Westbrook,%20Adam%20W.&rft.date=2018-01&rft.volume=115&rft.issue=1&rft.spage=216&rft.epage=231&rft.pages=216-231&rft.issn=0006-3592&rft.eissn=1097-0290&rft_id=info:doi/10.1002/bit.26459&rft_dat=%3Cproquest_cross%3E1942713935%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1966938315&rft_id=info:pmid/28941282&rfr_iscdi=true |