Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis

Hyaluronic acid (HA) is a high‐value biopolymer used in the biomedical, pharmaceutical, cosmetic, and food industries. Current methods of HA production, including extraction from animal sources and streptococcal cultivations, are associated with high costs and health risks. Accordingly, the developm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2018-01, Vol.115 (1), p.216-231
Hauptverfasser: Westbrook, Adam W., Ren, Xiang, Moo‐Young, Murray, Chou, C. Perry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 231
container_issue 1
container_start_page 216
container_title Biotechnology and bioengineering
container_volume 115
creator Westbrook, Adam W.
Ren, Xiang
Moo‐Young, Murray
Chou, C. Perry
description Hyaluronic acid (HA) is a high‐value biopolymer used in the biomedical, pharmaceutical, cosmetic, and food industries. Current methods of HA production, including extraction from animal sources and streptococcal cultivations, are associated with high costs and health risks. Accordingly, the development of bioprocesses for HA production centered on robust “Generally Recognized as Safe (GRAS)” organisms such as Bacillus subtilis is highly attractive. Here, we report the development of novel strains of B. subtilis in which the membrane cardiolipin (CL) content and distribution has been engineered to enhance the functional expression of heterologously expressed hyaluronan synthase (HAS) of Streptococcus equisimilis (SeHAS), in turn, improving the culture performance for HA production. Elevation of membrane CL levels via overexpressing components involved in the CL biosynthesis pathway, and redistribution of CL along the lateral membrane via repression of the cell division initiator protein FtsZ resulted in increases to the HA titer of up to 204% and peak molecular weight of up to 2.2 MDa. Moreover, removal of phosphatidylethanolamine and neutral glycolipids from the membrane of HA‐producing B. subtilis via inactivation of pssA and ugtP, respectively, has suggested the lipid dependence for functional expression of SeHAS. Our study demonstrates successful application of membrane engineering strategies to develop an effective platform for biomanufacturing of HA with B. subtilis strains expressing Class I streptococcal HAS. Bacillus subtilis is an ideal bacterium for biomanufacturing, and has been applied successfully to heterologous hyaluronic acid (HA) production on an industrial scale. Modulating the cardiolipin content and distribution in cell membrane can significantly enhance both the molecular weight and titer of HA produced in B. subtilis expressing streptococcal hyaluronan synthase.
doi_str_mv 10.1002/bit.26459
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1942713935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1942713935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4259-b3ce67872f30beee22131dcb385de8ac9f96375b50472f36bbb92223aaf1e8153</originalsourceid><addsrcrecordid>eNp1kEtL9DAUhoMoOl4W_oGPgBtdVHNp02ap4g0EN7ouSXo6E0kTTVpk_r2po99CcHVy4MnDe16Ejik5p4SwC23HcybKSm6hBSWyLgiTZBstCCGi4JVke2g_pde81o0Qu2iPNbKkrGELtLzxS-sBovVLHHpswDk8wKCj8oDHgMGvlDeAVzBCDC4sw5TwWwzdZEYb_PxntVZuisFbg5WxHbYeX-WHc5lMkx6ts-kQ7fTKJTj6ngfo5fbm-fq-eHy6e7i-fCxMySpZaG5A1E3Nek40ADBGOe2M5k3VQaOM7KXgdaUrUs6M0FpLxhhXqqfQ0IofoNONN0d8nyCN7WDTfFQ-JydvqSxZTbnkM3ryC30NU_Q5XaaEkLzhX8KzDWViSClC375FO6i4bilp5_bb3H771X5m_30bJz1A95_8qTsDFxvgwzpY_21qrx6eN8pPKIKO_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966938315</pqid></control><display><type>article</type><title>Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Westbrook, Adam W. ; Ren, Xiang ; Moo‐Young, Murray ; Chou, C. Perry</creator><creatorcontrib>Westbrook, Adam W. ; Ren, Xiang ; Moo‐Young, Murray ; Chou, C. Perry</creatorcontrib><description>Hyaluronic acid (HA) is a high‐value biopolymer used in the biomedical, pharmaceutical, cosmetic, and food industries. Current methods of HA production, including extraction from animal sources and streptococcal cultivations, are associated with high costs and health risks. Accordingly, the development of bioprocesses for HA production centered on robust “Generally Recognized as Safe (GRAS)” organisms such as Bacillus subtilis is highly attractive. Here, we report the development of novel strains of B. subtilis in which the membrane cardiolipin (CL) content and distribution has been engineered to enhance the functional expression of heterologously expressed hyaluronan synthase (HAS) of Streptococcus equisimilis (SeHAS), in turn, improving the culture performance for HA production. Elevation of membrane CL levels via overexpressing components involved in the CL biosynthesis pathway, and redistribution of CL along the lateral membrane via repression of the cell division initiator protein FtsZ resulted in increases to the HA titer of up to 204% and peak molecular weight of up to 2.2 MDa. Moreover, removal of phosphatidylethanolamine and neutral glycolipids from the membrane of HA‐producing B. subtilis via inactivation of pssA and ugtP, respectively, has suggested the lipid dependence for functional expression of SeHAS. Our study demonstrates successful application of membrane engineering strategies to develop an effective platform for biomanufacturing of HA with B. subtilis strains expressing Class I streptococcal HAS. Bacillus subtilis is an ideal bacterium for biomanufacturing, and has been applied successfully to heterologous hyaluronic acid (HA) production on an industrial scale. Modulating the cardiolipin content and distribution in cell membrane can significantly enhance both the molecular weight and titer of HA produced in B. subtilis expressing streptococcal hyaluronan synthase.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.26459</identifier><identifier>PMID: 28941282</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Bacillus subtilis ; Bacillus subtilis - genetics ; Bacillus subtilis - metabolism ; Biopolymers ; Biosynthesis ; Cardiolipin ; Cardiolipins - metabolism ; Cell culture ; Cell division ; Cell Membrane - genetics ; Cell Membrane - metabolism ; CRISPR ; Deactivation ; Engineering ; Food industry ; Food production ; Gene Expression ; Glycolipids ; Health risks ; hyaluronan ; Hyaluronan synthase ; Hyaluronan Synthases - genetics ; Hyaluronan Synthases - metabolism ; Hyaluronic acid ; Hyaluronic Acid - biosynthesis ; Hyaluronic Acid - chemistry ; Inactivation ; membrane engineering ; Metabolic Engineering - methods ; Molecular Weight ; Phosphatidylethanolamine ; Production methods ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Risk factors ; Strains (organisms) ; Streptococcus - enzymology ; Streptococcus - genetics ; Streptococcus equisimilis ; transcriptional interference</subject><ispartof>Biotechnology and bioengineering, 2018-01, Vol.115 (1), p.216-231</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4259-b3ce67872f30beee22131dcb385de8ac9f96375b50472f36bbb92223aaf1e8153</citedby><cites>FETCH-LOGICAL-c4259-b3ce67872f30beee22131dcb385de8ac9f96375b50472f36bbb92223aaf1e8153</cites><orcidid>0000-0002-7254-8118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.26459$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.26459$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28941282$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Westbrook, Adam W.</creatorcontrib><creatorcontrib>Ren, Xiang</creatorcontrib><creatorcontrib>Moo‐Young, Murray</creatorcontrib><creatorcontrib>Chou, C. Perry</creatorcontrib><title>Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol Bioeng</addtitle><description>Hyaluronic acid (HA) is a high‐value biopolymer used in the biomedical, pharmaceutical, cosmetic, and food industries. Current methods of HA production, including extraction from animal sources and streptococcal cultivations, are associated with high costs and health risks. Accordingly, the development of bioprocesses for HA production centered on robust “Generally Recognized as Safe (GRAS)” organisms such as Bacillus subtilis is highly attractive. Here, we report the development of novel strains of B. subtilis in which the membrane cardiolipin (CL) content and distribution has been engineered to enhance the functional expression of heterologously expressed hyaluronan synthase (HAS) of Streptococcus equisimilis (SeHAS), in turn, improving the culture performance for HA production. Elevation of membrane CL levels via overexpressing components involved in the CL biosynthesis pathway, and redistribution of CL along the lateral membrane via repression of the cell division initiator protein FtsZ resulted in increases to the HA titer of up to 204% and peak molecular weight of up to 2.2 MDa. Moreover, removal of phosphatidylethanolamine and neutral glycolipids from the membrane of HA‐producing B. subtilis via inactivation of pssA and ugtP, respectively, has suggested the lipid dependence for functional expression of SeHAS. Our study demonstrates successful application of membrane engineering strategies to develop an effective platform for biomanufacturing of HA with B. subtilis strains expressing Class I streptococcal HAS. Bacillus subtilis is an ideal bacterium for biomanufacturing, and has been applied successfully to heterologous hyaluronic acid (HA) production on an industrial scale. Modulating the cardiolipin content and distribution in cell membrane can significantly enhance both the molecular weight and titer of HA produced in B. subtilis expressing streptococcal hyaluronan synthase.</description><subject>Bacillus subtilis</subject><subject>Bacillus subtilis - genetics</subject><subject>Bacillus subtilis - metabolism</subject><subject>Biopolymers</subject><subject>Biosynthesis</subject><subject>Cardiolipin</subject><subject>Cardiolipins - metabolism</subject><subject>Cell culture</subject><subject>Cell division</subject><subject>Cell Membrane - genetics</subject><subject>Cell Membrane - metabolism</subject><subject>CRISPR</subject><subject>Deactivation</subject><subject>Engineering</subject><subject>Food industry</subject><subject>Food production</subject><subject>Gene Expression</subject><subject>Glycolipids</subject><subject>Health risks</subject><subject>hyaluronan</subject><subject>Hyaluronan synthase</subject><subject>Hyaluronan Synthases - genetics</subject><subject>Hyaluronan Synthases - metabolism</subject><subject>Hyaluronic acid</subject><subject>Hyaluronic Acid - biosynthesis</subject><subject>Hyaluronic Acid - chemistry</subject><subject>Inactivation</subject><subject>membrane engineering</subject><subject>Metabolic Engineering - methods</subject><subject>Molecular Weight</subject><subject>Phosphatidylethanolamine</subject><subject>Production methods</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Risk factors</subject><subject>Strains (organisms)</subject><subject>Streptococcus - enzymology</subject><subject>Streptococcus - genetics</subject><subject>Streptococcus equisimilis</subject><subject>transcriptional interference</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtL9DAUhoMoOl4W_oGPgBtdVHNp02ap4g0EN7ouSXo6E0kTTVpk_r2po99CcHVy4MnDe16Ejik5p4SwC23HcybKSm6hBSWyLgiTZBstCCGi4JVke2g_pde81o0Qu2iPNbKkrGELtLzxS-sBovVLHHpswDk8wKCj8oDHgMGvlDeAVzBCDC4sw5TwWwzdZEYb_PxntVZuisFbg5WxHbYeX-WHc5lMkx6ts-kQ7fTKJTj6ngfo5fbm-fq-eHy6e7i-fCxMySpZaG5A1E3Nek40ADBGOe2M5k3VQaOM7KXgdaUrUs6M0FpLxhhXqqfQ0IofoNONN0d8nyCN7WDTfFQ-JydvqSxZTbnkM3ryC30NU_Q5XaaEkLzhX8KzDWViSClC375FO6i4bilp5_bb3H771X5m_30bJz1A95_8qTsDFxvgwzpY_21qrx6eN8pPKIKO_Q</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Westbrook, Adam W.</creator><creator>Ren, Xiang</creator><creator>Moo‐Young, Murray</creator><creator>Chou, C. Perry</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7254-8118</orcidid></search><sort><creationdate>201801</creationdate><title>Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis</title><author>Westbrook, Adam W. ; Ren, Xiang ; Moo‐Young, Murray ; Chou, C. Perry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4259-b3ce67872f30beee22131dcb385de8ac9f96375b50472f36bbb92223aaf1e8153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bacillus subtilis</topic><topic>Bacillus subtilis - genetics</topic><topic>Bacillus subtilis - metabolism</topic><topic>Biopolymers</topic><topic>Biosynthesis</topic><topic>Cardiolipin</topic><topic>Cardiolipins - metabolism</topic><topic>Cell culture</topic><topic>Cell division</topic><topic>Cell Membrane - genetics</topic><topic>Cell Membrane - metabolism</topic><topic>CRISPR</topic><topic>Deactivation</topic><topic>Engineering</topic><topic>Food industry</topic><topic>Food production</topic><topic>Gene Expression</topic><topic>Glycolipids</topic><topic>Health risks</topic><topic>hyaluronan</topic><topic>Hyaluronan synthase</topic><topic>Hyaluronan Synthases - genetics</topic><topic>Hyaluronan Synthases - metabolism</topic><topic>Hyaluronic acid</topic><topic>Hyaluronic Acid - biosynthesis</topic><topic>Hyaluronic Acid - chemistry</topic><topic>Inactivation</topic><topic>membrane engineering</topic><topic>Metabolic Engineering - methods</topic><topic>Molecular Weight</topic><topic>Phosphatidylethanolamine</topic><topic>Production methods</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Risk factors</topic><topic>Strains (organisms)</topic><topic>Streptococcus - enzymology</topic><topic>Streptococcus - genetics</topic><topic>Streptococcus equisimilis</topic><topic>transcriptional interference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Westbrook, Adam W.</creatorcontrib><creatorcontrib>Ren, Xiang</creatorcontrib><creatorcontrib>Moo‐Young, Murray</creatorcontrib><creatorcontrib>Chou, C. Perry</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Westbrook, Adam W.</au><au>Ren, Xiang</au><au>Moo‐Young, Murray</au><au>Chou, C. Perry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol Bioeng</addtitle><date>2018-01</date><risdate>2018</risdate><volume>115</volume><issue>1</issue><spage>216</spage><epage>231</epage><pages>216-231</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><abstract>Hyaluronic acid (HA) is a high‐value biopolymer used in the biomedical, pharmaceutical, cosmetic, and food industries. Current methods of HA production, including extraction from animal sources and streptococcal cultivations, are associated with high costs and health risks. Accordingly, the development of bioprocesses for HA production centered on robust “Generally Recognized as Safe (GRAS)” organisms such as Bacillus subtilis is highly attractive. Here, we report the development of novel strains of B. subtilis in which the membrane cardiolipin (CL) content and distribution has been engineered to enhance the functional expression of heterologously expressed hyaluronan synthase (HAS) of Streptococcus equisimilis (SeHAS), in turn, improving the culture performance for HA production. Elevation of membrane CL levels via overexpressing components involved in the CL biosynthesis pathway, and redistribution of CL along the lateral membrane via repression of the cell division initiator protein FtsZ resulted in increases to the HA titer of up to 204% and peak molecular weight of up to 2.2 MDa. Moreover, removal of phosphatidylethanolamine and neutral glycolipids from the membrane of HA‐producing B. subtilis via inactivation of pssA and ugtP, respectively, has suggested the lipid dependence for functional expression of SeHAS. Our study demonstrates successful application of membrane engineering strategies to develop an effective platform for biomanufacturing of HA with B. subtilis strains expressing Class I streptococcal HAS. Bacillus subtilis is an ideal bacterium for biomanufacturing, and has been applied successfully to heterologous hyaluronic acid (HA) production on an industrial scale. Modulating the cardiolipin content and distribution in cell membrane can significantly enhance both the molecular weight and titer of HA produced in B. subtilis expressing streptococcal hyaluronan synthase.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28941282</pmid><doi>10.1002/bit.26459</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7254-8118</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2018-01, Vol.115 (1), p.216-231
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_1942713935
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Bacillus subtilis
Bacillus subtilis - genetics
Bacillus subtilis - metabolism
Biopolymers
Biosynthesis
Cardiolipin
Cardiolipins - metabolism
Cell culture
Cell division
Cell Membrane - genetics
Cell Membrane - metabolism
CRISPR
Deactivation
Engineering
Food industry
Food production
Gene Expression
Glycolipids
Health risks
hyaluronan
Hyaluronan synthase
Hyaluronan Synthases - genetics
Hyaluronan Synthases - metabolism
Hyaluronic acid
Hyaluronic Acid - biosynthesis
Hyaluronic Acid - chemistry
Inactivation
membrane engineering
Metabolic Engineering - methods
Molecular Weight
Phosphatidylethanolamine
Production methods
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Risk factors
Strains (organisms)
Streptococcus - enzymology
Streptococcus - genetics
Streptococcus equisimilis
transcriptional interference
title Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A37%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20of%20cell%20membrane%20to%20enhance%20heterologous%20production%20of%20hyaluronic%20acid%20in%20Bacillus%20subtilis&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Westbrook,%20Adam%20W.&rft.date=2018-01&rft.volume=115&rft.issue=1&rft.spage=216&rft.epage=231&rft.pages=216-231&rft.issn=0006-3592&rft.eissn=1097-0290&rft_id=info:doi/10.1002/bit.26459&rft_dat=%3Cproquest_cross%3E1942713935%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1966938315&rft_id=info:pmid/28941282&rfr_iscdi=true